Chapter 1. Static Grames of Complete Information.

Lec 1. Introduction

- deal with strategic settings with many individuals

- · Methodology of Game Theory
 - · Key assumption: rationality.
- In economics the standard form of rationality means that a decision maker chooses an action that yields maximum (expected) utility among all possible actions, given the decision maker's information.
- In game theory, a player is rational if the player chooses an action that maximizes his expected payoff, given the player's beliefs about opponents' strategy choices.
- · We focus on how players should behave in a certain sense roother than how they do behave.
- · In this course, we focus on non-cooperative game theory framework.

treat all players' action as individual actions.

· Different types of games

determined by a player herself.

- · Static vs dynamic Static: one-shot, simultaneous-move
- complete information vs incomplete information Complete information: each player's payoff function is common knowledge among all players.

· Mutual knowledge: an event E is known by all players.

· Common knowledge: all players know E, all players know that they all know E ~ (我知道你知道我知道 ~) (王形院借记及王限次)

- Four types of games
 - Static games of complete information
 - 2 Dynamic games of complete information
 - 3 Static games of incomplete information
 - 4 Dynamic games of incomplete information
- Four corresponding solution concepts
 - Nash equilibrium
 - Subgame-perfect Nash equilibrium
 - 3 Bayesian Nash equilibrium
 - 4 Perfect Bayesian equilibrium

Lec 2. Normal - form Games

reach player's payoff function is common knowledge among all players.

e.g. Prisoners' Dilemma - Static games of complete information

sone shot, simultaneous move.

- · Normal form representation:
 - the players in the game;

the strategies available to each player;

• the payoff beceived by each player for each combination of strategies that could be chosen by the players.

The **normal-form** (also called **strategic-form**) representation of an n-player game specifies the players' **strategy spaces** S_1, \ldots, S_n and their **payoff functions** u_1, \ldots, u_n . We denote this game by

$$G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}.$$

Let (s_1, \ldots, s_n) be a combination of strategies, one for each player. Then $u_i(s_1, \ldots, s_n)$ is the payoff to player i if for each $j = 1, \ldots, n$, player j chooses strategy s_j .

- In general, when there are only two players and each player has a finite number of strategies, then the payoff functions can be represented in a bi-matrix.
- The bi-matrix need not be symmetric, e.g.,

Player 2 $L \qquad R$ Player 1 $M \quad u_1(U, L), u_2(U, L) \quad u_1(U, R), u_2(U, R)$ $D \quad u_1(D, L), u_2(D, L) \quad u_1(D, R), u_2(D, R)$

the payoff of a player depends not only on his own action, but also on the actions of others.

→ Interdependence (strategic interaction).

> Prisoners' Dilemma

• For Example 1, the normal-form representation is $G = \{S_1, S_2; u_1, u_2\}$:

= $\{S_1, S_2; u_1, u_2\}$:
• $S_1 = S_2 = \{D, C\}$, where D means "Defect", and C means "Confess"
• $u_1(D, D) = -1, u_1(D, C) = -9, u_1(C, D) = 0, u_1(C, C) = -6$

• $u_2(D, D) = -1, u_2(D, C) = 0, u_2(C, D) = -9, u_2(C, C) = -6$

TIPS. 若有第三个参与人,则引入不同的表代表 players 的工同选择. Player 3 称为 Matrix player (知 若 > 3人.则从用矩阵表示.

• The payoffs of two players in Example 1 can be represented in the following bi-matrix:

> Prisoner 2 Defect Confess Prisoner 1 Confess -1, -1-9,00, -9-6, -6

 \bullet Prisoner 1 is also called the row player, and Prisoner 2 the column player.

• Each entry of the bi-matrix has two numbers: the first number is the payoff of the row player and the second is that of the column player.

Concept of Strategies

· Important concepts: Strictly) dominated strategy (Strictly) dominant strategy

$$\begin{array}{lll} s&=&(s_1,\ldots,s_{i-1},s_i,s_{i+1},\ldots,s_n)\\ s_{-i}&=&(s_1,\ldots,s_{i-1},s_{i+1},\ldots,s_n) \end{array}$$

$$S = S_1 \times \dots S_{i-1} \times S_i \times S_{i+1} \times \dots S_n$$

$$S_{-i} = S_1 \times \dots S_{i-1} \times S_{i+1} \times \dots S_n$$

In a normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}$, the best **response** for player i to a combination of other players' strategies $s_{-i} \in S_{-i}$, denoted by $R_i(s_{-i})$, is referred to as the set of maximizers of

$$\max_{s_i \in S_i} u_i(s_i, s_{-i}).$$

• Remark: $R_i(s_{-i}) \subset S_i$ can be an empty set, a singleton, a finite set or an infinite set. We call R_i the **best-response correspondence** for player i.

In a normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}$, let $s_i', s_i'' \in S_i$. Strategy s'_i is strictly dominated by strategy s''_i (or strategy s'_i Det. strictly dominates strategy s'_i), if for each feasible combination of the other players' strategies, player i's payoff from playing s_i is strictly less than player i's payoff from playing s_i'' , i.e.,

$$u_i(s_i', s_{-i}) < u_i(s_i'', s_{-i}), \quad \forall s_{-i} \in S_{-i}.$$

We say s'_i is a **strictly dominated strategy** of player *i*.

TIPS: 两些限制: 斯人的选择

· 产格被占优入风 两有的形比别好。 A在I个ST优于ST部可易P很ST

 \Rightarrow a rational player will never choose a strictly dominated strategy.

<u>Def</u>: In a normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}$, strategy $\tilde{s}_i \in S_i$ is a strictly dominant strategy of player i, if it strictly dominates any other strategies. Equivalently, if for each feasible combination of the other players' strategies, player i's payoff from playing \tilde{s}_i is strictly larger than player i's payoff from playing any other strategies, i.e.,

$$u_i(\tilde{s}_i, s_{-i}) > u_i(\hat{s}_i, s_{-i}), \quad \forall s_{-i} \in S_{-i}, \forall \hat{s}_i \in S_i, \hat{s}_i \neq \tilde{s}_i.$$

> a rational player will always choose a strictly dominant strategy. A strictly dominant strategy is unique of it exists.

• Result 1: A strictly dominated strategy can never be a best response, i.e., if s'_i is a strictly dominated strategy of player i, then $s_i' \notin R_i(s_{-i})$ for all $s_{-i} \in S_{-i}$.

• Result 2: A strictly dominant strategy is always a best response, i.e., if \tilde{s}_i is a strictly dominant strategy of player i, then $\tilde{s}_i \in R_i(s_{-i})$ for all $s_{-i} \in S_{-i}$.

重复剔除严格茄汞略 .

IESDS (Iterated Elimination of Strictly Dominated Strategies).

• Step 1:

Player 1 does not have a strictly dominated strategy.

 \bullet For Player 2, R is a strictly dominated strategy, which is strictly dominated by M. Hence player 2 will never choose R if he is

• If player 1 knows that player 2 is rational, then he can eliminate R from player 2's strategy space by playing the following game:
Player 2

Player 1 $U = \begin{bmatrix} L & M \\ 1,0 & 1,2 \\ 0,3 & 0,1 \end{bmatrix}$

• Step 2:

ep 2: • Now player 1 has a strictly dominated strategy, which is strategy D. Player 1 U 1,0 1,2 U 1,0 1,2 • If player 2 also knows that i) player 1 knows that player 2 is rational, and ii) player 1 is rational, then he can also eliminate D.

• The game is further reduced to

Player 2 $\bullet\,$ Again L is eliminated if player 1 knows that i) player 2 knows that Player 1 U 1,2 player 1 knows that player 2 is rational, ii) player 2 knows that player 1 is rational, iii) player 2 is rational.

Player 2

(U, M) is the final outcome!

· 2 main drawbacks:

A key assumption: rationality of all players is **common** knowledge.

• The prediction of IESDS may not be very precise, and sometimes it predicts nothing about games.

IESDS can do nothing with the following game: Player 2 Player 1 M 4,0 0,4 5,3

 $U \ 0,4 \ 4,0 \ 5,3$ D | 3, 5 | 3, 5 | 6, 6两有人的 1个 束 **配** 租合

Lec 3. (Nash Equilibrium)

In the *n*-player normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}$, the strategies (s_1^*,\dots,s_n^*) are a Nash equilibrium if,

$$s_i^* \in R_i(s_{-i}^*), \quad \forall i = 1, \dots, n.$$

Equivalently,

Then s_i^* is the equilibrium strategy of player i.

 $u_i(s_i^*, s_{-i}^*) = \max_{s} u_i(s_i, s_{-i}^*),$

- Each player's strategy must be a best response, given other players equilibrium strategies. 偏高 動面地
- \bullet No single player wants to deviate unilaterally \to strategically stable or self-enforcing

Notice:一般只有理性人的假设. 这里"知道其民是理蛀彻"的 Common knowledge 星较猛佝假设.

PS. 在NE中 不需亚这个假庭。

☆TIPS: NE皇後定他人选择的最份反应. e.g. 在全发文部game中. NE是3人里1人全而非(pure strottegy)

缺陷:本身关注的星静态博弈,但其实现正式每个人 能预测其记的最优选择。(这与静态博者 中假设内同时行动新1.

优色: NE強子IESDS | 大き形 rottlonalty 是 common knowledge

· How to find a NE?

- For a bi-matrix game, underline the payoff to each player's best response for any given other players' strategies.
- If you find all payoffs in a single entry are underlined, then this is a Nash equilibrium.

e.g.

		Player 2			
		L	C	R	
	U	0, 4	4,0	5, 3	
Player 1	M	4,0	0, 4	5, 3	
	D	3,5	3, 5	$\underline{6},\underline{6}$	

There exists a unique NE: (D, R).

· TIPS. 東略個台要写成東略的個台. 不正写成收益個台!

· The relationship between NE & IESDS.

In an *n*-player normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}$, if the strategies (s_1^*, \ldots, s_n^*) are a Nash equilibrium, then they survive iterated elimination of strictly dominated strategies.

i.e {NE的结果} ∈ {IESDS的结果}

<u>Proof:</u> BWOC. Suppose S^* is the first of the strategies (S^*, \dots, S^*) to be eliminated for being strictly dominated.

∴ 3Si that has not yet been eliminated from Si that strictly dominates Si[±].

T.E. Wi(St.S-i) < Wi(St.S-i). For all S-i that have not been eliminated from other players' strategy spaces.

いらず is the 1st equilibrium strategy to be eliminated, we have いばれられられられられられる。

This contraducts to NE. 12.

Consider an *n*-player normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\},\$ which is finite. If iterated elimination of strictly dominated strategies eliminates all but the strategies (s_1^*, \ldots, s_n^*) , then these strategies are the unique Nash equilibrium of the game.

i.e. IESDS有喔-觸⇒NE有喔-觸.

- Proof: By Proposition 1, Nash equilibrium strategies can never be So we have eliminated in IESDS. Since (s_1^*, \ldots, s_n^*) are the only strategies which are not eliminated, s_i^* is thus the only possible equilibrium strategy for player i. Hence, we cannot find two different Nash equilibria
- It remains to show that (s_1^*, \ldots, s_n^*) are indeed a Nash equilibrium. Since s_{-i}^* have not been eliminated, we have
- We use proof by contradiction. Suppose s_i^* is not a best response of player i to s_{-i}^* .
- Let the relevant best response be b_i (which must exist since the game is finite), i.e.,

$$\max_{s_i \in S_i} u_i(s_i, s_{-i}^*) = u_i(b_i, s_{-i}^*)$$
 > $u_i(s_i^*, s_{-i}^*)$.

But b_i must be strictly dominated by some strategy t_i at some stage of the process of iterated elimination.

$$u_i(b_i, s_{-i}) < u_i(t_i, s_{-i})$$

for all strategies (s_{-i}) that have not been eliminated from other players' strategy spaces.

$$u_i(b_i, s_{-i}^*) < u_i(t_i, s_{-i}^*),$$

which contradicts the fact that b_i is a best response to s_{-i}^* .

· Cournot Model of Duopoly.

· Set up

- Suppose two firms (1 and 2) produce a homogeneous good, and compete in quantities.
- Let q_i be the quantity produced by firm i, where i = 1, 2.
- The aggregate quantity of the good is denoted by $Q = q_1 + q_2$.
- The inverse demand of the good is

$$P(Q) = \begin{cases} a - Q, & \text{if } Q < a, \\ 0, & \text{if } Q \ge a. \end{cases}$$

- The cost function of firm i is $C_i(q_i) = cq_i$, where 0 < c < a.
- Question: How much should each firm produce?

· Build the model

- We first need to translate the problem into a normal-form game.
 - Players: the two firms
 - ② Strategies: $S_i = [0, \infty)$ for i = 1, 2 (any q_i is a strategy of firm i)
 - Payoffs:

$$\pi_i(q_i, q_j) = \begin{cases} q_i[a - (q_i + q_j) - c], & \text{if } q_i + q_j < a, \\ -cq_i, & \text{if } q_i + q_j \ge a. \end{cases}$$

• The pair of quantities (q_1^*, q_2^*) is a Nash equilibrium if for each firm i that q_i^* solves

$$\max_{0 \le q_i < \infty} \pi_i(q_i, q_j^*).$$

• Equivalently,

$$q_i^* \in R_i(q_i^*),$$

where i, j = 1, 2 and $i \neq j$.

· Solve it.

- To solve for the Nash equilibrium, we first need to find the best response correspondence of each player.
- Consider the following two cases:
- Case 1: When $q_j > a c$, player i's payoff is

$$\pi_i(q_i, q_j) \begin{cases} < 0, & \text{if } q_i > 0, \\ = 0, & \text{if } q_i = 0, \end{cases}$$

which is clearly maximized at $q_i = 0$. Thus, the best response of firm i is $R_i(q_i) = 0$.

• Case 2: When $0 \le q_j \le a - c$, player i's payoff is

$$\pi_i(q_i, q_j) \begin{cases} < 0, & \text{if } q_i > a - c - q_j, \\ = q_i[a - (q_i + q_j) - c], & \text{if } q_i \le a - c - q_j. \end{cases}$$

The optimal q_i is determined by the following first-order condition

$$a - q_j - c - 2q_i = 0.$$

- Thus, the best response is $R_i(q_i) = \frac{1}{2}(a q_i c)$.
- \bullet In sum, the best response correspondence (or function) of player i is

$$R_i(q_j) = \begin{cases} \frac{1}{2}(a - q_j - c), & \text{if } 0 \le q_j \le a - c, \\ 0, & \text{if } q_j > a - c. \end{cases}$$

• The Nash equilibrium (q_1^*, q_2^*) is the intersection of two best response correspondences, which imply that

$$q_1^* = R_1(q_2^*)$$
 and $q_2^* = R_2(q_1^*)$.

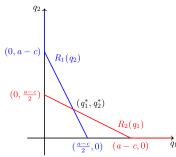
• We can obtain (q_1^*, q_2^*) by simultaneously solving

$$q_1^* = \frac{1}{2}(a - q_2^* - c),$$

$$q_2^* = \frac{1}{2}(a - q_1^* - c).$$

• The unique Nash equilibrium is $(q_1^*, q_2^*) = (\frac{a-c}{3}, \frac{a-c}{3})$.

• Alternatively, we can solve for the Nash equilibrium graphically, i.e., (q_1^*, q_2^*) can be determined by the intersection of the two best response curves.



· Bertrand Model of Duopoly

• Suppose two firms produce differentiated products and compete in

The demand for firm i is

$$q_i(p_i, p_j) = a - p_i + bp_j,$$

where b > 0, which suggests that the two products are substitutes.

- Firms' marginal cost is again assumed to be c, where 0 < c < a.
- Question: What is the Nash equilibrium?

Build the model

- The strategy space of firm i is $S_i = [0, \infty)$ and any $p_i \in S_i$ is a strategy.
- The profit of firm i is

$$\pi_i(p_i, p_j) = (a - p_i + bp_j)(p_i - c).$$

• The pair of prices (p_i^*, p_i^*) is a Nash equilibrium if p_i^* solves

$$\max_{0 \le p_i < \infty} (a - p_i + bp_j^*)(p_i - c),$$

$$\bigvee_{0 \le p_i < \infty} \mathsf{Foc}$$

$$p_i^* = \frac{1}{2}(a + bp_j^* + c).$$

which leads to

• The Nash equilibrium is determined by

· Solve H.

$$p_1^* = \frac{1}{2}(a + bp_2^* + c),$$

$$p_2^* = \frac{1}{2}(a + bp_1^* + c).$$

- The unique Nash equilibrium is $(p_1^*, p_2^*) = \begin{pmatrix} \frac{a+c}{2-b}, \frac{a+c}{2-b} \end{pmatrix}$
- The problem only makes sense if b < 2.

· The Problem of the Commons

• Suppose n farmers graze their goats on the village green.

· Set up.

- The number of goats that the i^{th} farmer owns is g_i and the total number of goats in the village is denoted by $G = g_1 + \cdots + g_n$.
- The cost of buying and caring for a goat is c.
- The value to a farmer is v(G) per goat.
 - Maximum number of goats that can be grazed is G_{max} , where v(G) > 0 for $G < G_{max}$ and v(G) = 0 for $G \ge G_{max}$. • For $G < G_{max}$, v'(G) < 0 and v''(G) < 0.
- Assume that goats are continuously divisible and farmers simultaneously choose how many goats to graze.
- Question: What should farmers do? Are their choices socially optimal?

· Build the model.

- The normal-form representation of the game:
 - Players: n farmers
 - ② Strategies: $S_i = [0, G_{max})$ (g_i is a strategy of farmer i)

$$u_i(g) = g_i v(g_i + g_{-i}) - cg_i,$$

where
$$g = (g_1, \dots, g_n)$$
 and $g_{-i} = G - g_i$

• If (g_1^*, \dots, g_n^*) are a Nash equilibrium, then g_i^* must solve

$$v(g_i^* + g_{-i}^*) + g_i^* v'(g_i^* + g_{-i}^*) - c = 0.$$

 \bullet Summing up all n first-order conditions yields

$$v(G^*) + \frac{1}{n}G^*v'(G^*) - c = 0$$

for
$$G^* = g_1^* + \dots + g_n^*$$
.

· What's the problem?

• The social optimum (denoted by G^{**}) solves

(Social welfare maximize)
$$\max_{0 \le G < \infty} Gv(G) - Gc,$$

which is given by

$$v(G^{**}) + G^{**}v'(G^{**}) - c = 0.$$

- Comparing G^{**} with G^{*} , we have $G^{*} > G^{**}$:
 - Too many goats are grazed in the Nash equilibrium, compared to the social optimum.
 - The common resource is overutilized because each farmer considers his or her own incentives, but not other farmers'.

Lec 4. Mixed Strategies

In a normal-form game $G = \{S_1, \dots, S_n; u_1, \dots, u_n\}$, suppose $S_i = \{s_{i1}, \ldots, s_{iK_i}\}$. Each strategy $s_{ik} \in S_i$ is a **pure strategy** for player i. A **mixed strategy** for player i is a probability distribution $p_i = (p_{i1}, \dots, p_{iK_i}), \text{ for } k = 1, \dots, K_i, \text{ where } p_{i1} + \dots + p_{iK_i} = 1 \text{ and }$ $p_{ik} \geq 0$.

参考理解:Sip是一组选择、参与看可以图任系比例组合它们 类似方好的茶锅。

Player 2

Heads

-1, 1

Player 1 $\stackrel{\text{Heads}}{\scriptscriptstyle{-}}$

Tails

- In the Matching Pennies example, $S_i = \{\text{Heads, Tails}\}.$
- Each player has two pure strategies: Heads or Tails.
- A mixed strategy for a player is a probability distribution (p, 1-p), where p is the probability that the player chooses Heads, while 1 - p is the probability that the player chooses Tails.
- (1/2, 1/2) means playing Heads and Tails with an equal probability; (1/3, 2/3) means playing Heads with a probability of 1/3 and Tails with a probability of 2/3.
- The mixed strategy (1,0) is simply a <u>pure strategy</u> of playing
- How to extend the definition of Nash equilibrium to include mixed strategies?
- Consider the case with two players.
- Suppose

$$S_1 = \{s_{11}, s_{12}, \dots, s_{1J}\},\$$

and

$$S_2 = \{s_{21}, s_{22}, \dots, s_{2K}\}.$$

- Each $s_{1j} \in S_1$ is a pure strategy for player 1, and each $s_{2k} \in S_2$ is a pure strategy for player 2.
- If player 1 thinks that player 2 will play a mixed strategy $p_2 = (p_{21}, \dots, p_{2K})$, then player 1's expected payoff of playing a pure strategy s_{1i} is

$$v_1(s_{1j}, p_2) = \sum_{k=1}^{K} p_{2k} u_1(s_{1j}, s_{2k}).$$

• Player 1's expected payoff of playing a mixed strategy $p_1 = (p_{11}, \dots, p_{1J})$ is

$$v_1(p_1, p_2) = \sum_{j=1}^{J} p_{1j} \sum_{k=1}^{K} p_{2k} u_1(s_{1j}, s_{2k})$$
$$= \sum_{j=1}^{J} \sum_{k=1}^{K} p_{1j} p_{2k} u_1(s_{1j}, s_{2k}).$$

• A mixed strategy $p_1 = (p_{11}, \dots, p_{1J})$ is a best response to p_2 if

$$v_1(p_1, p_2) \ge v_1(p_1', p_2),$$

for all p'_1 over S_1 .

• Similarly, if player 2 thinks player 1 will play a mixed strategy $p_1 = (p_{11}, \dots, p_{1J})$, then player 2's expected payoff of playing a mixed strategy $p_2 = (p_{21}, \dots, p_{2K})$ is

$$v_2(p_1, p_2) = \sum_{K=1}^{K} p_{2k} \sum_{j=1}^{J} p_{1j} u_2(s_{1j}, s_{2k})$$
$$= \sum_{j=1}^{J} \sum_{k=1}^{K} p_{1j} p_{2k} u_2(s_{1j}, s_{2k}).$$

· Mixed - Strategy Nash Equilibrium

In a two-player normal-form game $G = \{S_1, S_2; u_1, u_2\}$, the mixed strategies (p_1^*, p_2^*) are a Nash equilibrium if each player's mixed strategy is a best response to the other player's mixed strategy:

$$v_1(p_1^*, p_2^*) \ge v_1(p_1, p_2^*)$$
 for every p_1 over S_1 ,

and

 $v_2(p_1^*, p_2^*) \ge v_2(p_1^*, p_2)$ for every p_2 over S_2 .

XTIPS 考试时往爱看问的是他来呢还是很合束略的NE.

· How to find mixed-strategy NE?

- We consider the case with two players, each having two pure strategies.
- Let $p_1 = (r, 1 r)$ be a mixed strategy for player 1 and $p_2 = (q, 1 - q)$ be a mixed strategy for player 2.
- \bullet Player 1's expected payoff of playing p_1 , given player 2's strategy p_2 , is

文
$$v_1(p_1, p_2) = rv_1(s_{11}, p_2) + (1 - r)v_1(s_{12}, p_2).$$

- For each p_2 (or q), we need to compute r, denoted by $r^*(q)$, such that p_1 is a best response to p_2 .
- $r^*(q)$ is the set of solutions to

$$\max_{x} v_1(p_1, p_2),$$

where

$$r^*(q) = \begin{cases} 1, & \text{if } v_1(s_{11}, p_2) > v_1(s_{12}, p_2); \\ [0, 1], & \text{if } v_1(s_{11}, p_2) = v_1(s_{12}, p_2); \\ 0, & \text{if } v_1(s_{11}, p_2) < v_1(s_{12}, p_2). \end{cases}$$

• Similarly, player 2's expected payoff

$$v_2(p_1, p_2) = qv_2(p_1, s_{21}) + (1 - q)v_2(p_1, s_{22}).$$

• Given p_1 , the best response for player 2 is denoted by $q^*(r)$, which is the set of solutions to

$$\max_{q} v_2(p_1, p_2),$$

where

$$q^*(r) = \begin{cases} 1, & \text{if } v_2(p_1, s_{21}) > v_2(p_1, s_{22}); \\ [0, 1], & \text{if } v_2(p_1, s_{21}) = v_2(p_1, s_{22}); \\ 0, & \text{if } v_2(p_1, s_{21}) < v_2(p_1, s_{22}). \end{cases}$$

- A mixed strategy Nash equilibrium is an intersection of the two best-response correspondences $r^*(q)$ and $q^*(r)$.
- If (r^*, q^*) is a mixed strategy Nash equilibrium, then

$$r^* = r^*(q^*),$$

 $q^* = q^*(r^*).$

e. g.

• Find a Nash equilibrium in the game of Matching Pennies.

		Player 2			
		Heads 7	Tails C		
Player 1	Heads	-1, 1	1, -1		
1 layer 1	Tails	1, -1	-1.1		

- Let $p_1 = (r, 1-r)$ be a mixed strategy for player 1, where r is the TIPS. 正写清下製什么的 极光车. probability player 1 chooses Heads.
- Similarly, let $p_2 = (q, 1 q)$ be a mixed strategy for player 2, where q is the probability player 2 chooses Heads.
- What is $r^*(q)$ and $q^*(r)$?
- For player 1,

$$v_1(s_{11}, p_2) = q \cdot (-1) + (1-q) \cdot 1 = 1 - 2q,$$

 $v_1(s_{12}, p_2) = q \cdot 1 + (1-q) \cdot (-1) = -1 + 2q.$

• Player 1 chooses Heads (i.e., $r^*(q) = 1$) if and only if

$$1-2q>-1+2q \Leftrightarrow 0 \leq q < 1/2.$$

• We have

$$r^*(q) = \begin{cases} 1, & \text{if } 0 \leq q < 1/2; \\ [0,1], & \text{if } q = 1/2; \\ 0, & \text{if } 1/2 < q \leq 1. \end{cases}$$

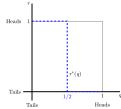


Figure 1: Best response correspondence for player 1: $r^*(q)$

Figure 2: Best response correspondence for player 2: $q^*(r)$

• For player 2,

$$v_2(p_1, s_{21}) = r \cdot 1 + (1 - r) \cdot (-1) = -1 + 2r,$$

 $v_2(p_1, s_{22}) = r \cdot (-1) + (1 - r) \cdot 1 = 1 - 2r.$

• Player 2 chooses Heads (i.e., $q^*(r) = 1$) if and only if

$$-1 + 2r > 1 - 2r \Leftrightarrow 1/2 < r \le 1$$
.

• We have

$$q^*(r) = \begin{cases} 1, & \text{if } 1/2 < r \le 1; \\ [0, 1], & \text{if } r = 1/2; \\ 0, & \text{if } 0 \le r < 1/2. \end{cases}$$

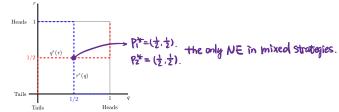


Figure 3: Mixed-strategy Nash equilibrium in Matching Pennies

Prop.

周处:3个及以上纯承贴组成混合汞略时前NE.可以发IESDS玄辅-些汞略.

· General case:

- In general, let $p=(p_1,\ldots,p_n)$ be a mixed strategy profile, where $p_i=(p_{i1},\ldots,p_{iK_i})$, for $i=1,\ldots,n$.
- ullet The expected payoff for player i is

$$v_i(p) = \sum_{i=1}^{K_i} p_{ij}v_i(p_1, \dots, p_{i-1}, s_{ij}, p_{i+1}, \dots, p_n).$$

• The mixed strategy p_i^* is a best response to $p_{-i} = (p_1, \dots, p_{i-1}, p_{i+1}, \dots, p_n)$ if

$$v_i(p_i^*, p_{-i}) \ge v_i(p_i, p_{-i})$$

for all probability distribution p_i over S_i .

In a normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}$, the mixed strategies (p_1^*, \ldots, p_n^*) are a **(mixed-strategy) Nash equilibrium** if each player's mixed strategy is a best response to the other players' mixed strategies in terms of expected payoff, i.e.,

$$v_i(p_i^*, p_{-i}^*) \ge v_i(p_i, p_{-i}^*)$$

for every p_i over S_i , and for all i = 1, ..., n.

· Existence of NE.

Thm

In the *n*-player normal-form game $G = \{S_1, \ldots, S_n; u_1, \ldots, u_n\}$, if *n* is finite and S_i is finite for every *i*, then there exists at least one Nash equilibrium, possibly involving mixed strategies.

PS. 这星NE石石的充分不必安条件

· Strictly Dominated Strategy and Best Response

- Before we know that if a (pure) strategy is a strictly dominated strategy, then it can never be a best response.
- But the reverse may not be true.
- Once we have considered mixed strategies, then the reverse can also be true.
- For instance, in a two-player game, a pure strategy is a strictly dominated strategy if and only if it is never a best response.
- A pure strategy can be strictly dominated by a mixed strategy, even if it is not strictly dominated by any pure strategy!
- Example:

- D is not strictly dominated by either U or M.
- \bullet But D is strictly dominated by a strategy (1/2,1/2,0), i.e., playing U and M with a half probability.
- \bullet D is a strictly dominated strategy \to D is never a best response.
- A pure strategy can be a best response to a mixed strategy, even if it is not a best response to any pure strategy!

	Player 2				
		L	R		
	U	3, -	0, -		
Player 1	M	0, -	3, -		
	D	2, -	2, -		

- ullet D is not a best response to L or R.
- D is a best response to a mixed strategy (q, 1 q) chosen by player 2, if

$$2 \ge 3q \text{ and } 2 \ge 3(1-q),$$

i.e.,
$$1/3 \le q \le 2/3$$
.

• D is not a "never best response" $\rightarrow D$ is not a strictly dominated strategy!

Chapter 2 Dynamic Glames

Lec 5.

· Dynamic Glames of Complete Information

· Lead in example

- Consider a two-move game between two players. First, player 1 decides whether to give \$1000 to player 2. Second, after observing the choice of player 1, player 2 chooses whether to explode a grenade that will kill both of them. Player 2 can threaten player 1 by saying "Give the money to me, otherwise I will explode the grenade to kill you!"
- Question: What should player 1 do in the first place? Is player 2's threat credible to player 1? What is the outcome of this simple game?
- On a winter evening, a farmer found a snake frozen with cold. The farmer wanted to save the snake, which would make himself happy. But he was worried if the snake would bite him after it was saved. Believing that the snake would be grateful, the farmer saved it. However, when the snake was recovered, it bit and killed the farmer immediately.
- Question: Why shouldn't the farmer save the snake?

· Introduction

- These are examples of dynamic games.
- The central issue of dynamic games is **credibility**.
- Dynamic: sequential choice, or repeated play
- Complete information: each player's payoff function is common knowledge among all players.
- Two types of dynamic games of complete information:
 - ① Dynamic games of complete and perfect information
 - 2 Dynamic games of complete and imperfect information
- In static games of complete information, we use **normal-form representation** to describe a game.
- Now we use extensive-form representation for dynamic games.
- In particular, we will draw game trees.
- The above game is an example of dynamic games of complete and perfect information.
- This type of games takes the following form:
 - Player 1 chooses an action a_1 from the feasible set A_1 ;
 - Player 2 observes a₁ and then chooses an action a₂ from the feasible set A₂;
 - Payoffs are $u_1(a_1, a_2)$ and $u_2(a_1, a_2)$.
- Note that
 - A_2 may depend on the action a_1 , i.e., $A_2(a_1)$.
 - Some action a_1 may even end the game, so that $A_2(a_1)$ is an empty set (i.e., no choice of player 2).
- In Example 1:
- $A_1 = \{L, R\}$, where L = "give \$1000" and R = "don't give";
- $A_2(L) = A_2(R) = \{L', R'\}$, where L' = "explode" and R' = "don't explode".

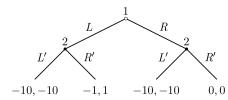


Figure 2: A game tree for Example 1

- Consider a two-player and two-stage game.
- Player 1 chooses an action L or R.
- Player 2 observes player 1's action and then chooses an action L' or R'.
- Each path (a combination of two actions) in the following tree is followed by two payoffs: the first for player 1 and the second for player 2.

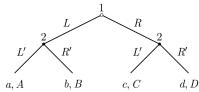


Figure 1: Extensive-form representation using a game tree

- In Example 2:
- $A_1 = \{L, R\}$, where L = "save" and R = "don't save";
- $A_2(L) = \{L', R'\}$, where L' = "bite" and R' = "don't bite";
- $A_2(R) = \emptyset$.

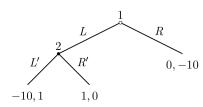


Figure 3: A game tree for Example 2

- Some key reatures of dynamic games of complete and perfect information:
 - The moves occur in sequence;
 - ② All previous moves are observed before the next move is chosen;
 - The players' payoffs from each combination of moves are common knowledge.
- How to solve this type of games?
- We use backwards induction.
- In the second stage, player 2 observes the action (say a_1) chosen by player 1 in the first stage, and then chooses an action by solving

$$\max_{a_2 \in A_2} u_2(a_1, a_2).$$

- Assume this optimization problem has a unique solution, denoted by $R_2(a_1)$. This is player 2's best response to player 1's action a_1 .
- For example, $R_2(L) = R'$ and $R_2(R) = L'$.
- \bullet In the first stage, knowing player 2's best response, player 1's problem becomes

$$\max_{a_1 \in A_1} u_1(a_1, R_2(a_1)).$$

- Assume it also has a unique solution, denoted by a_1^* .
- For example, $a_1^* = R$ and $R_2(a_1^*) = L'$.
- We call $(a_1^*, R_2(a_1^*))$ the backwards-induction outcome of the game.
- In Example 1:
 - $R_2(L) = R_2(R) = R'$;
 - $a_1^* = R$ and $R_2(a_1^*) = R'$;
 - The backwards-induction outcome is (R, R').
- In Example 2:
 - $R_2(L) = L';$
 - $a_1^* = R;$
 - The backwards-induction outcome is R.

· Stackelberg Model of Duopoly

- Consider a dominant firm moving first and a follower moving second.
- The game is played as follows:
 - Firm 1 chooses a quantity $q_1 \geq 0$.
 - Firm 2 observes q_1 and then chooses a quantity $q_2 \geq 0$.
 - The payoff of firm i is the profit

$$\pi_i(q_1, q_2) = q_i[P(Q) - c],$$

where $Q = q_1 + q_2$ and

$$P(Q) = \begin{cases} a - Q, & \text{if } Q < a; \\ 0, & \text{if } Q \ge a. \end{cases}$$

- How to find the backwards-induction outcome?
- First, find the best response function $R_2(q_1)$ for firm 2, i.e., for any given q_1 , find q_2 that solves

$$\max_{q_2 \ge 0} \pi_2(q_1, q_2),$$

where

$$\pi_2(q_1, q_2) = \begin{cases} q_2(a - q_1 - q_2 - c), & \text{if } q_1 + q_2 < a; \\ -cq_2, & \text{if } q_1 + q_2 \ge a. \end{cases}$$

• Then we have

$$R_2(q_1) = \begin{cases} \frac{a - c - q_1}{2}, & \text{if } q_1 < a - c; \\ 0, & \text{if } q_1 \ge a - c. \end{cases}$$

- $R_2(q_1)$ is the same as that in the Cournot model.
- Second, firm 1 knows $R_2(q_1)$ and solves

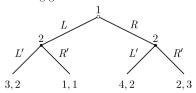
$$\max_{q_1 \ge 0} \pi_1(q_1, R_2(q_1)),$$

where

$$\pi_1(q_1, R_2(q_1)) = \begin{cases} q_1 \left[a - q_1 - \frac{a - q_1 - c}{2} - c \right], & \text{if } q_1 < a - c; \\ q_1(a - q_1 - c), & \text{if } a - c \le q_1 < a; \\ -cq_1, & \text{if } q_1 \ge a. \end{cases}$$

Notice: Backwards-induction outcome 和 NE 可能不同.

• Consider the following game:



- $R_2(L) = L'$ and $R_2(R) = R'$.
- The backwards-induction outcome is (L, L').
- Suppose both players choose actions simultaneously, then they play the following game:

- The Nash equilibrium is (R, R'), which differs from the backwards-induction outcome (L, L').
- The backwards-induction outcome in a dynamic game could be different from the Nash equilibrium of the corresponding game played simultaneously.

- Clearly, for $q_1 > a c$, firm 1's profit is always negative.
- Thus we only need to solve

$$\max_{q_1 \geq 0} q_1 \left[a - q_1 - \frac{a - q_1 - c}{2} - c \right] = \max_{q_1 \geq 0} \left[\frac{1}{2} q_1 (a - q_1 - c) \right],$$

which leads to the following first-order condition

$$a - c - 2q_1 = 0.$$

• The optimal choice of firm 1 is

$$q_1^* = \frac{a-c}{2}.$$

• The quantity chosen by firm 2 is

$$q_2^* = R_2(q_1^*) = \frac{a-c}{4}.$$

• The market price is

$$P^* = a - q_1^* - q_2^* = c + \frac{a - c}{4}.$$

• Firms' profits and the total profit are

$$\pi_1^* = \frac{(a-c)^2}{8}, \quad \pi_2^* = \frac{(a-c)^2}{16}, \text{ and } \Pi^* = \pi_1^* + \pi_2^* = \frac{3(a-c)^2}{16}.$$

· Dynamic Games of Imperfect Information

- Consider the following simple two-stage game:
 - Players 1 and 2 simultaneously choose actions a_1 and a_2 from the feasible sets A_1 and A_2 , respectively.
 - Players 3 and 4 observe the outcome of the first stage (a₁, a₂) and then simultaneously choose actions a₃ and a₄ from the feasible sets A₃ and A₄, respectively.
 - Payoffs are $u_i(a_1, a_2, a_3, a_4)$ for i = 1, 2, 3, 4.
- This game differs from the two-stage game with perfect information, since there are simultaneous moves within each stage.
- We solve this game by using the idea of backwards induction.
- For each given (a_1, a_2) , players 3 and 4 try to find the Nash equilibrium in stage 2.
- Assume the second-stage game has a unique Nash equilibrium

$$(a_3^*(a_1, a_2), a_4^*(a_1, a_2)).$$

 \bullet Then, player 1 and player 2 play a simultaneous-move game with payoffs

$$u_i(a_1, a_2, a_3^*(a_1, a_2), a_4^*(a_1, a_2)), \text{ for } i = 1, 2.$$

- Suppose (a_1^*, a_2^*) is the unique Nash equilibrium of this simultaneous-move game.
- Then

$$(a_1^*, a_2^*, a_3^*(a_1^*, a_2^*), a_4^*(a_1^*, a_2^*))$$

is the subgame-perfect outcome of the two-stage game.

· e.g. Bank Runs 银行挤兑搏弃.

- Two investors have each deposited \$5 millions with a bank. The bank has invested these deposits in a long-term project.
- If the bank is forced to liquidate its investment before the project matures, a total of \$8 millions can be recovered.
- If the bank allows the investment to reach maturity, the project will pay out a total of \$16 millions.
- There are two dates at which the investors can make withdrawals at the bank: Date 1 is before the bank's investment matures and Date 2 is after.
- Suppose there is no discounting.
- We work backwards.
- At date 2, in the unique Nash equilibrium, both withdraw and each obtains \$8 millions.
- At date 1, they play the following game:

	Withdraw	Don't
Withdraw	4,4	5, 3
Don't	3,5	8,8

- There are 2 pure-strategy Nash equilibria of this game:
 - Both withdraw and each obtains \$4 millions;
 - 2 Both don't and each obtains \$8 millions.

• Comparison between Cournot model and Stackelberg model:

Table 1: Cournot Model vs. Stackelberg Model

Variable	Cournot Model	Stackelberg Model
q_1^*	$\frac{a-c}{3}$	$\frac{a-c}{2}$
q_2^*	$\frac{a-c}{3}$	$\frac{a-c}{4}$
π_1^*	$\frac{(a-c)^2}{9}$	$\frac{(a-c)^2}{8}$
π_2^*	$\frac{(a-c)^2}{9}$	$\frac{(a-c)^2}{16}$
Π^*	$\frac{2(a-c)^2}{9}$	$\frac{3(a-c)^2}{16}$
P^*	$c + \frac{a-c}{3}$	$c + \frac{a-c}{4}$

及对所有outcome 却NE. 再独作的 complete information 部解。 (同时进行的game的)

• Players' payoffs in date 1:

	Withdraw	$\operatorname{Don't}$
Withdraw	4, 4	5, 3
Don't	3, 5	next stage

• Players' payoffs in date 2:

	Withdraw	Don't
Withdraw	8,8	11, 5
Don't	5, 11	8.8

- There are 2 subgame-perfect outcomes of the original two-stage game:
 - \bullet Both with draw at date 1 to obtain \$4 millions each \to the case of bank run
 - Both don't withdraw at date 1 but do at date 2, and each obtains \$8 millions.
- Although there are two possible subgame-perfect outcomes, only the second one is efficient.
- This model does not predict when bank runs will occur, but does show that they can occur as an equilibrium outcome.

Lec 6. Extensive - Form Representation of Glames and Subgame - Perfect NE.

· Normal - Form Representation of Glames

Def.

The ${\bf normal\text{-}form}$ ${\bf representation}$ of a game specifies

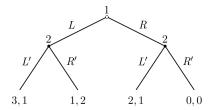
- (1) the players in the game;
- (2) the strategies available to each player;
- (3) the payoff peceived by each player for each combination of strategies that could be chosen by the players.

· Extensive - Form Representation of Giames

Def

The extensive-form representation of a game specifies:

- (1) the players in the game;
- (2a) when each player has the move;
- (2b) what each player can do at each of his or her opportunities to move:
- (2c) what each player knows at each of his or her opportunities to
- (3) the payoffs received by each player for each combination of moves that could be chosen by the players.
- Example 1:



· Information Set.

- For games with imperfect information, some previous moves are not observed by the player with the current move.
- To present this kind of ignorance of previous moves and to describe what each player knows at each of his/her move, we introduce the notion of a player's **information set**.

Def

An **information set** for a player is a collection of decision nodes satisfying:

- (i) The player needs to move at every node in the information set.
- (ii) When the play of the game reaches a node in the information set, the player with the move does not know which node in the set has (or has not) been reached.
- In an extensive-form game, a collection of decision nodes, which constitutes an information set, is connected by a dotted line.
- We can use information set to differentiate perfect and imperfect information.
- A game is of perfect information if every information set is a singleton, and of imperfect information if there is at least one non-singleton information set.

> Strategies US. moves

- In Example 1, the game tree begins with a **decision node** for player 1, which is also the **initial node** of the game.
- After player 1's choice (L or R) is made, player 2's decision node is reached. And player 2 needs to decide whether to choose L' or R'.
- A **terminal node** is reached after player 2's move (i.e., the game ends), and payoffs of players are realized.

TIPS. 每T decision node 上亚林往珠束人!

• (ii) implies that the player must have the same set of feasible actions at each decision node in an information set, otherwise the player could infer from the set of actions available that some node(s) had or had not been reached.

- Let's consider a two-player simultaneous-move (static) game as
 - 1. Player 1 chooses $a_1 \in A_1$;
 - Player 2 does not observe player 1's move but chooses an $a_2 \in A_2$;
 - 3. Payoffs are $u_1(a_1, a_2)$ and $u_2(a_1, a_2)$.
- We need an information set to describe player 2's ignorance of player 1's actions.
- The above static game of complete information can be represented as a dynamic game of complete but imperfect information.

Strategy

A strategy for a player is a complete plan of actions. It specifies a feasible action for the player in every contingency in which the player might be called on to act. 可能发生的事

- An equivalent definition: A player's **strategy** is a function which assigns an action to each information set (not each decision node) belonging to the player.
- An action and a strategy do not make a big difference in static games, while they do in dynamic games.

今先及管信息集正常投NE. -・Subgame - Perfect NE. 再な痺準37博希精(な)的。

A subgame in an extensive-form game

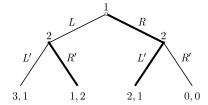
- (a) begins at a decision node n that is a singleton information set (but is not the game's initial node);
- (b) include all the decision and terminal nodes following node n in the game tree (but no nodes that do not follow n);
- (c) does not cut any information sets (i.e., if a decision node n' follows n in the game tree, then all other nodes in the information set containing n' must also follow n, and so must be included in the subgame).

A Nash equilibrium is $\mathbf{subgame}\text{-}\mathbf{perfect}$ if the players' strategies constitute a Nash equilibrium in every subgame.

中·总传NE+ST專弃NE双重验证.

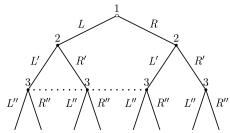
Prop. finite dynamic game of complete information to subgameperfect NE. (有可能是限合取略).

- In Example 1, there are two subgames: in the left subgame, the Nash equilibrium involves the player 2 choosing R'; in the right subgame, the Nash equilibrium involves the player 2 choosing L'.
- The subgame-perfect Nash equilibrium is (R, (R', L')).
- We can use thick lines to represent the equilibrium paths.



- Subgame-perfect Nash equilibrium is closely related to two previous concepts:
 - backwards-induction outcome
 - 2 subgame-perfect outcome
- What's the <u>difference</u> between an equilibrium and an outcome
- An equilibrium is a collection of players' strategy profiles, while an outcome is a collection of players' actions.
- Consider the following two-stage game of complete and perfect
 - 1. Player 1 chooses an action $a_1 \in A_1$;
 - 2. Player 2 observes a_1 and then chooses an action $a_2 \in A_2$;
 - 3. Payoffs are $u_1(a_1, a_2)$ and $u_2(a_1, a_2)$.
- The best response $R_2(a_1)$ solves $\max_{a_2 \in A_2} u_2(a_1, a_2)$.
- a_1^* solves $\max_{a_1 \in A_1} u_1(a_1, R_2(a_1))$.
- The backwards-induction outcome is $(a_1^*, R_2(a_1^*))$.
- The subgame-perfect Nash equilibrium is $(a_1^*, R_2(\cdot))$.
- Note that $R_2(a_1^*)$ is an action, while $R_2(\cdot)$ is a strategy for player 2.

- Example 3:
- Player 3 has a non-singleton information set and a singleton information set.



⇒ 若子在虚後处. 则只知道他在三个物位线 若3在最后也,刚知道他在最后边(I:R. Z:R').

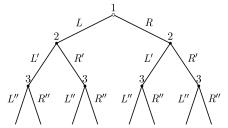
- In Example 3:
- Player 1 has two strategies: L and R.
- Player 2 has four strategies:

$$(L', L'); (L', R'); (R', L'); (R', R').$$

• Player 3 has four strategies

$$(L'', L''); (L'', R''); (R'', L''); (R'', R'').$$

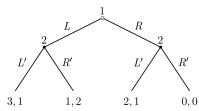
- Example 4:
- Player 3 has 4 singleton information sets.



- Player 3 has 16 strategies.
- For instance, the strategy (L'', R'', R'', L'') means:
 - if player 1 plays L and player 2 plays L', then player 3 plays L'

 - if player 1 plays L and player 2 plays R', then player 3 plays R''• if player 1 plays R and player 2 plays L', then player 3 plays R''
 - if player 1 plays R and player 2 plays R', then player 3 plays

• Example 1:



- In Example 1:
- (R, L') is the backwards-induction outcome, while (R, (R', L')) is the subgame-perfect Nash equilibrium.
- In the Stackelberg model:
- \bullet The backwards-induction outcome is $(q_1^*, q_2^*),$ where $q_1^* = \frac{a-c}{2}$ and $q_2^* = \frac{a-c}{4}$, while the subgame-perfect Nash equilibrium is

$$(q_1^*, R_2(q_1)), \text{ where } R_2(q_1) = \begin{cases} \frac{a-c-q_1}{2}, & q_1 < a-c \\ 0, & q_1 \ge a-c \end{cases}$$

- Consider the following two-stage game of complete but imperfect information:
 - Players 1 and 2 simultaneously choose actions a_1 and a_2 from the feasible sets A_1 and A_2 , respectively.
 - Players 3 and 4 observe the outcome of the first stage (a_1, a_2) and then simultaneously choose actions a_3 and a_4 from the feasible sets A_3 and A_4 , respectively.
 - Payoffs are $u_i(a_1, a_2, a_3, a_4)$ for i = 1, 2, 3, 4.
- \bullet For each given $(a_1,a_2),$ players 3 and 4 play the Nash equilibrium in stage 2

$$(a_3^*(a_1, a_2), a_4^*(a_1, a_2)).$$

 \bullet Then, player 1 and player 2 play a simultaneous-move game with payoffs

$$u_i(a_1, a_2, a_3^*(a_1, a_2), a_4^*(a_1, a_2)), i = 1, 2$$

- Suppose (a_1^*, a_2^*) is the unique Nash equilibrium in stage 1.
- Then the subgame-perfect outcome is

$$(a_1^*, a_2^*, a_3^*(a_1^*, a_2^*), a_4^*(a_1^*, a_2^*)).$$

• The subgame-perfect Nash equilibrium is

$$(a_1^*, a_2^*, a_3^*(a_1, a_2), a_4^*(a_1, a_2)).$$

• NE U.S. Subgane - Perfect NE.

- A Nash equilibrium may not be subgame-perfect.
- In Example 1, the normal-form representation is

		Player 2				
		(L', L')	(L',R')	(R', L')	(R',R')	
Player 1	L	3, 1	3, 1	1,2	1, 2	
1 layer 1	R	2, 1	0,0	2, 1	0,0	

- \bullet Two Nash equilibria: (L,(R',R')) and (R,(R',L'))
- Only one subgame-perfect Nash equilibrium: (R, (R', L'))
- The Nash equilibrium (R, (R', L')) is subgame-perfect, because R' and L' are the optimal strategies in the left and right subgames, respectively, where player 2 is the only player.
- On the other hand, the Nash equilibrium (L,(R',R')) is not subgame-perfect, because when player 1 chooses R, R' is not optimal to player 2 in the right subgame, i.e., R' is not a Nash equilibrium in that subgame.
- One can think the strategy (R', R') by player 2 as a threat to player 1.
- Nash equilibria that rely on non-credible threats or promises can be eliminated by the requirement of subgame perfection.
- Subgame-perfect Nash equilibrium is a refinement of Nash equilibrium, i.e.,

 $\{Subgame\text{-perfect Nash equilibria}\}\subset \{Nash equilibria\}$

· Introduction

Lec 7.8

- In a long-term relationship, one must consider how his/her current behavior will influence others' behavior in the future, or how threats or promises about future behavior can affect current behavior.
- In these dynamic situations, one might care about "reputation", which is often used to describe how a person's past actions affect future beliefs and behavior.
- We use **repeated games** to study such interactions among players.
- In repeated games, we are interested in how repeated interactions among players would affect their behavior.
- Two types of repeated games:
 - finitely repeated games
 - infinitely repeated games

· Finitely Repeated Games

· 2-stage Risoners' Dilemma 今节同子上-Lec的两阶段及复美信息博弈.

- The two players play the simultaneous-move game twice;
- Each player observes the outcome of the first play before the second (公內重复兩期设有差别) game begins;
- The payoff of each player in the whole game is simply the sum of two payoffs in both stages (i.e., no discounting).
- We can use backwards induction to solve the game.
- In stage 2, the unique Nash equilibrium is (L_1, L_2) , in which each player receives 1.
- In stage 1, the two players play the following equivalent game:

- Hence, (L_1, L_2) is the unique Nash equilibrium in stage 1.

- Let $G = \{A_1, \dots, A_n; u_1, \dots, u_n\}$ denote a static game of complete information in which players 1 through n simultaneously choose actions a_1 through a_n from the action spaces A_1 through A_n , and the payoffs are $u_1(a_1, \dots, a_n)$ through $u_n(a_1, \dots, a_n)$.
- The game G is called the **stage game** of the repeated game.

Given a stage game G, let G(T) denote the **finitely repeated game** in which G is played T times, with the outcomes of all preceding plays observed before the next play begins. The payoffs for G(T) are simply the sum of the payoffs from the T stage games.

If the stage game G has a unique Nash equilibrium then, for any finite T, the repeated game G(T) has a unique subgame-perfect outcome: the Nash equilibrium of G is played in every stage.

- In the Prisoners' Dilemma example, the unique outcome in each period is (L₁, L₂) regardless of how many times the game is played.
- The result in the above proposition <u>can be extended even if *G*</u> itself is a dynamic game of complete information.

· What if the stage game G has multiple NE?

Then there may be subgame-perfect outcomes of the repeated game G(T) in which, for any t < T, the outcome of stage t is not a Nash equilibrium of G.

• Consider the following game:

		Player 2			
		L_2	M_2	R_2	
	L_1	1,1	5,0	0,0	
Player 1	M_1	0, 5	4, 4	0,0	
	R_1	0,0	0,0	3,3	

- There are two Nash equilibria: (L_1, L_2) and (R_1, R_2) .
- Suppose the game is repeated twice.
- Then it is possible that the first-stage outcome is neither (L_1, L_2) nor (R_1, R_2) in a subgame-perfect Nash equilibrium.
- Consider, for example, player i's strategy:
 - play M_i in the first stage;
 - $\bullet\,$ play R_i if the first-stage outcome is $(M_1,M_2);$ otherwise, play $L_i.$
- It can be verified that the strategy profile constitutes a subgame-perfect Nash equilibrium, in which the first-stage outcome is (M_1, M_2) .

· Verify: {是否是子博弈均衡 是否是总体的均衡

stage 1: (M_1M_2) \Rightarrow (7,7).

player1 在 Stage 2 量配入金偏离

在 stage 1 中. S巷选L1 ⇒ (L1,M2)+(L1,L2)=(6,1). X 老选Ri,显型Worse off.

Stage 2 (Stage 1 凡是 Subgame)

TIPS.立个问题里太阳考虑上面们录略。

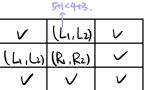
☆. Q: 在2 PT段博车中,有多サイNE?

①. 壬使多1阶段的花果是(M1,M2), 第二阶段的花果应为 ____?

· Player 2 信定送Mz player 可偏离为 {L, > 可行 > 目的: 適は信室suge 2的電路使偏离之可行. 可能+2/0/-2. 秦自从(L,L)偏离到(R,R)或反之

第二門與可解印明衛作果: 目的:确保stage 1 太偏离

竟义:若Stage1这《 3表中对应位置 RM Stage 2 play 表 中的東略



-由NE. R可附是(L,(2)或(R,D) V: 任意作果均可确保 Stage 1 天偏离.

5 共26个更略组合 若115LL、1012的领域L2 对R、同理

131: Stage 1: (M1, M2)

②.对Stage I的不同可能做以上讨论。

Stage 2 Stayer1, (L. L. R. Q.

核心: 气打到 Stage 2 的NE. 计异可能在 stage 2的"长利" 再在Stage 1里找网络的偏离。

最后对偏离的限制。通过固定stage 2的部分录略。

· Infinitely Repeated Games

Let π_t be the payoff in stage t. Given the discount factor $\delta \in (0,1)$, the **present value** of the infinite sequence of payoffs π_1, π_2, \ldots is

$$\pi_1 + \delta \pi_2 + \delta^2 \pi_3 + \dots = \sum_{t=1}^{\infty} \delta^{t-1} \pi_t.$$

Given a stage game G, let $G(\infty, \delta)$ denote the **infinitely repeated** \mathbf{game} in which G is played forever and players share the discount factor δ . For each t, the outcomes of the t-1 preceding plays are observed before the t^{th} stage begins. Each player's payoff in $G(\infty, \delta)$ is the present value of the player's payoffs from the infinite sequence of stage games.

- Consider the following infinitely repeated game of Prisoners' eg. Dilemma:
 - ullet In the first stage, the two players play the stage game G and receive payoffs $\pi_{1,1}$ and $\pi_{2,1}$;
 - \bullet In stage t, the players observe the actions chosen in the preceding t-1 stages, and then play G to receive $\pi_{1,t}$ and $\pi_{2,t}$;
 - The payoff of the infinitely repeated game is the present value of the sequence of payoffs: $\sum_{t=1}^{\infty} \delta^{t-1} \pi_{i,t}$ for player i=1,2.
 - There are infinitely many strategies for the players.
 - Some common strategies:

noncooperative strategy:

 L_i in every stage (grim) trigger strategy: 常发素品

- play R_i in the first stage;
- in stage t, if the outcome of all t-1 preceding stages has been
- -1 (R_1, R_2) , then play R_i ; otherwise, play L_i 🏽 tit-for-tat (or tit for two tats) strategy 🕇 期 对形出什么,七期我坚什么

carrot-and-stick strategy (or two-phase strategy)

Player 2 $\begin{array}{c|cc} & L_2 & R_2 \\ L_1 & 1, 1 & 5, 0 \\ R_1 & 0, 5 & 4, 4 \end{array}$

· Strategies in Infinitely Repeated Games.

- We focus on the first two strategies.
- If both players adopt the noncooperative strategy, then (L_1, L_2) is repeated forever.
- ullet Using a trigger strategy, player i cooperates until someone fails to cooperate, which triggers a switch to noncooperation forever.
- If both players adopt the trigger strategy, then the outcome of the infinitely repeated game is (R₁, R₂) in every stage.
- Question: Is it a Nash equilibrium in the infinitely repeated game where both players adopt the trigger strategy (i.e., cooperation is achieved)?

Claim:

Both players adopting the noncooperative strategy is a Nash equilibrium.

Proof.

- Assume player i plays L_i in every stage.
- Then player j's best response is also "to play L_i in every stage".

Claim:

Both players adopting the trigger strategy is a Nash equilibrium if and only if $\delta \geq 1/4$.

Proof.

- Assume player i has adopted the trigger strategy. We seek to show player j's best response is also to adopt the trigger strategy.
- Case 1: The outcome in a previous stage is not (R_1, R_2) . Since player i plays L_i forever, player j's best response is also to play L_j forever
- Case 2: In the first stage or in a stage where all the preceding outcomes have been (R_1, R_2) , if player j plays the trigger strategy, then he should play R_j in this stage, and the outcome from this stage onwards will be (R_1, R_2) in every stage. Thus player j's payoff from this stage onwards is

$$\sum_{t=1}^{\infty} 4 \times \delta^{t-1} = \frac{4}{1-\delta}.$$

• If player j plays L_j in this stage, player i still plays R_i in this stage but L_i forever from the next stage. Thus player j will also play L_j from the next stage onwards. This means player j's payoff from this stage onwards is

$$5 + \sum_{t=1}^{\infty} \delta^t = 5 + \frac{\delta}{1 - \delta}.$$

• Therefore, playing the trigger strategy in this case is optimal iff

$$\frac{4}{1-\delta} \ge 5 + \frac{\delta}{1-\delta} \Leftrightarrow \delta \ge 1/4.$$

• Summarizing Cases 1 and 2, the trigger strategies constitute a Nash equilibrium for the game iff $\delta \geq 1/4$.

Claim:

The trigger-strategy Nash equilibrium in the infinitely repeated Prisoners' Dilemma game is subgame perfect.

Proof.

- In an infinitely repeated game, a subgame is characterized by its previous history. The subgames can be grouped as follows:
- (i) Subgames whose previous histories are always a finite sequence of (R_1, R_2) .
- (ii) Subgames whose previous histories contain other outcomes different from (R₁, R₂).
- For a subgame in Case (i), the players' strategies in such a subgame are again the trigger strategies, which is a Nash equilibrium for the whole game and thus for the subgame as well.
- For a subgame in Case (ii), the players' strategies are simply to repeat (L_1, L_2) all the time in the subgame, which is also a Nash equilibrium.

- In the Prisoners' Dilemma example, the cooperative outcome, which cannot be achieved in the stage game or in any finitely repeated game, can be sustained if the stage game is played forever.
- The condition is that the discount factor is sufficiently large (or players are sufficiently patient).
- Folk theorem: cooperative equilibria which do not exist in static games can be achieved in repeated games.

intuition: 背叛可以暂时获利. 并且如果对标 很及 care, 背叛也可以长期获利.

(偏离带来一辆的收益和无穷期报失)

·一以性偏离原理。今民改集1个stage. 其它stage 和仍被质质略进行。

- One-deviation principle: A strategy profile is a subgame-perfect Nash equilibrium if and only if, for each player i and for each subgame, no single deviation would raise player i's payoff in the subgame.
- e.g. Prisoners' Dilemma.

		Play	er 2
		L_2	R_2
Player 1	L_1	1, 1	5,0
1 layer 1	R_1	0, 5	4,4

	1.	7	1.	有此 省	
	t	t+ı	t+2	Š	
Player 1 Player 2	Ц	Lı	Ĺ	·~	- 46 \$ 5+ \$
Player 2	R2	Lz	L	·	

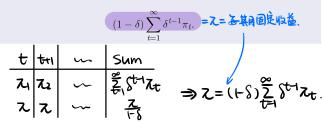
· Feasible Payoff

The payoffs (x_1, \ldots, x_n) are **feasible** in the stage game G if they are a convex combination (i.e., a weighted average, where the weights are all nonnegative and sum to one) of the pure-strategy payoffs of G.

- In the Prisoners' Dilemma example, all pure-strategy payoffs (1,1), (0,5), (4,4) and (5,0) are feasible.
- The payoffs (2.5, 2.5) are also feasible, which are a convex combination of the pure-strategy payoffs of (1, 1) and (4, 4).
- \bullet All feasible payoffs are depicited in the shaded region of Figure 1.

· Average Payoff.

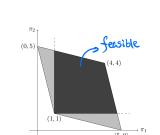
Given the discount factor δ , the average payoff of the infinite sequence of payoffs π_1, π_2, \ldots is



· Friedman Theorem.

Let G be a finite, static game of complete information. Let (e_1, \ldots, e_n) denote the payoffs from a Nash equilibrium of G, and let (x_1, \ldots, x_n) denote any feasible payoffs from G, where $x_i > e_i$ for each player i. If the discount factor δ is sufficiently close to one, then there exists a subgame-perfect Nash equilibrium in the infinitely repeated game $G(\infty, \delta)$ that achieves (x_1, \ldots, x_n) as the average payoff.

intwition: S足够大时,可以得到比NE更好的结果



(0, 5)

(1, 1)

Figure 1: Feasible payoffs in Prisoners' Dilemma

Figure 2: Subgame-perfect Nash equilibria in infinitely repeated games $\,$

可信· 应用: Collusion between Cournot Duopolists

- In the Cournot model, the unique Nash equilibrium involves each firm producing $q_c = \frac{a-c}{3}$ and earning a profit of $\pi_c = \frac{(a-c)^2}{9}$.
- If there is a monopolist, then the monopoly quantity is $q_m = \frac{a-c}{2}$ and the monopoly profit is $\pi_m = \frac{(a-c)^2}{4}$.
- If the two firms can collude to produce $\frac{q_m}{2}$ each, then they jointly produce the monopoly quantity q_m . Each of them obtains a profit of $\frac{\pi_m}{2} = \frac{(a-c)^2}{8}$.
- If firm i produces $\frac{q_m}{2}$, then the best response for firm j is to produce $q_d = \frac{3(a-c)}{8}$. In this case, firm i's profit is $\frac{3(a-c)^2}{32}$, while firm j's profit is $\pi_d = \frac{9(a-c)^2}{64}$.
- Consider the infinitely repeated game based on the Cournot stage game when both firms have the discount factor $0 < \delta < 1$.
- Trigger strategy:
 - produce half of the monopoly quantity $\frac{q_m}{2}$, in the first period.
 - in period t, produce $\frac{q_m}{2}$ if both firms have produced $\frac{q_m}{2}$ in all the preceding t-1 periods; otherwise, produce the Cournot quantity q_c .
- Here the cooperative output is $\frac{q_m}{2}$ and noncooperative output is q_c .
- Question: Is the collusive outcome sustained?

For the infinitely repeated game with the Cournot stage game, both Claim: firms playing the trigger strategy is a subgame-perfect Nash equilibrium if and only if $\delta \geq \frac{9}{17}$.

- \bullet Suppose firm i has adopted the trigger strategy, we need to show firm j's best response is also to player the trigger strategy in any subgame.
- There are again two types of subgames to be checked.
- First, if a quantity other than $\frac{q_m}{2}$ has been chosen by any firm before the current period, then firm i chooses q_c from this period onwards. The best response for firm j is also to choose q_c from this period onwards. Thus, playing the trigger strategy is optimal in this subgame.
- \bullet Second, in period t, if the outcomes of all previous periods are $(\frac{q_m}{2}, \frac{q_m}{2})$, firm j's present value of the payoffs from this period onwards if it chooses the trigger strategy is

$$\frac{\pi_m}{2(1-\delta)}$$

 \bullet If firm j deviates from the trigger strategy by choosing a quantity other than $\frac{q_m}{2}$, then firm i produces $\frac{q_m}{2}$ in this period, but q_c from period t+1 onwards. Thus, it is optimal for firm j to produce q_d in this period and q_c from period t+1 onwards. Thus, firm j's present value of the payoffs from period t onwards is

$$\pi_d + \frac{\delta}{1 - \delta} \pi_c.$$

 \bullet Therefore, trigger strategy is the best response for firm j to firm i's trigger strategy iff

$$\frac{\pi_m}{2(1-\delta)} \geq \pi_d + \frac{\delta}{1-\delta}\pi_c \Leftrightarrow \delta \geq \frac{\pi_d - \frac{\pi_m}{2}}{\pi_d - \pi_c} = \frac{9}{17}.$$

- What happens if players are less patient, i.e., $\delta < \frac{9}{17}$? Are there any other strategies that can support the collusive outcome as a subgame-perfect Nash equilibrium? > Yes. 但最時要改变
- Consider the two-phase (or carrot-and-stick) strategy:
 - in the first period, produce half of the monopoly quantity $\frac{q_m}{2}$;
 - in period t, produce $\frac{q_m}{2}$ if both firms produce $\frac{q_m}{2}$ or both firms produce x in period t-1; otherwise, produce x.
- This strategy involve a (one-period) punishment phase in which the firm produces x and a (potentially infinite) collusive phase in which the firm produces $\frac{q_m}{2}$.
- Such a strategy punishes
- ullet If both firms produce x, the profit of each firm is denoted by $\pi(x) = (a - 2x - c)x$, where $\frac{x}{a - c} \le \frac{1}{2}$.
- If firm i produces x, the best response of firm j is to produce $q_{dp} = \frac{a-x-c}{2}$ and the corresponding profit is denoted by $\pi_{dp}(x) = \frac{(a-x-c)^2}{4}$.
- There are two types of subgames:
 - (i) collusive subgames: the outcome of previous period is either $\frac{q_m}{2}$, $\frac{q_m}{2}$) or (x, x);
 - (ii) punishment subgames: the outcome of previous period is neither $\left(\frac{q_m}{2}, \frac{q_m}{2}\right)$ nor (x, x).
- To show both firms adopting the two-phase strategy is a subgame-perfect Nash equilibrium, we use the one-deviation principle.
- Suppose firm i has adopted the two-phase strategy.
- \bullet In collusive subgames, if firm j also adopts the two-phase strategy,

In collusive subgained its payoff is $\mathcal{M}(\frac{q_m}{2}, \frac{b_m}{2})$ $\mathcal{H}_{\frac{1}{2}}$ $(1 + \delta + \frac{\delta^2}{1 - \delta}) \frac{1}{2} \pi_m = \frac{1}{1 - \delta} \cdot \frac{1}{2} \chi_m$.

If firm j deviates in this period only, then firm i still chooses $\frac{q_m}{2}$ in this period but x in the next period. Then firm j would choose q_d in this period and x in the next period. The payoff from deviation is

【徒五】 ● Thus, choosing the two-phase strategy is optimal iff

ル(オルス) 有性
$$(1+\delta)\frac{1}{2}\pi_m \geq \pi_d + \delta\pi(x)$$
 (1)

• In punishment subgames, it is optimal to choose the two-phase strategy for firm j iff

$$j$$
 iff $\pi(x) + \delta \frac{1}{2} \pi_m \geq \pi_{dp}(x) + \delta \pi(x)$, 对連号看的要求 $\pi(x) = \pi_{dp}(x) + \delta \pi(x)$, 对通导看的要求 $\pi(x) = \pi_{dp}(x) + \delta \pi(x)$, $\pi(x) = \pi_{dp}(x)$, $\pi(x) = \pi_{d$

- Both firms adopting the two-phase strategy is a subgame-perfect Nash equilibrium iff (1) and (2) hold.
- The two conditions (1) and (2) can be rewritten as

$$\delta\left(\frac{1}{2}\pi_m - \pi(x)\right) \ge \pi_d - \frac{1}{2}\pi_m,\tag{3}$$

$$\delta\left(\frac{1}{2}\pi_m - \pi(x)\right) \ge \pi_{dp}(x) - \pi(x). \tag{4}$$

- Intuitions: the gain this period from deviating must not exceed the discounted value of the loss next period from punishment.
- Consider the case $\delta = \frac{1}{2} < \frac{9}{17}$.
- Condition (3) is satisfied iff $\frac{x}{a-c} \le \frac{1}{8}$ or $\frac{x}{a-c} \ge \frac{3}{8}$.
- Condition (4) is satisfied iff $\frac{3}{10} \le \frac{x}{a-c} \le \frac{1}{2}$.
- Thus, two-phase strategies constitute a subgame-perfect Nash equilibrium in the game iff $\frac{3}{8}(a-c) \le x \le \frac{1}{2}(a-c)$.

→ 8 < 午时子博弃精炼解是百石在旅歌》的取值

最后通牒 ·Ultimatum Games

- Suppose player 1 makes an offer (s_1, s_2) , where s_i is the share for player i = 1, 2, and $s_1 + s_2 = 1$.
- After observing the offer from player 1, player 2 decides whether to accept the offer or not.
- If the offer is accepted, then each player i receives s_i ; otherwise, there is an exogenous settlement $(\tilde{s}_1, \tilde{s}_2)$ which involves player i receiving \tilde{s}_i , where $\tilde{s}_1 + \tilde{s}_2 \leq 1$.
- For instance, $\tilde{s}_1 = \tilde{s}_2 = 0$ means that both players receive nothing if no agreement is reached.

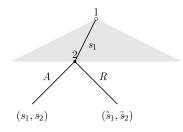


Figure 1: A game tree for the ultimatum game

- · There are infinitely many NE
- · <u>But</u> a unique <u>subgame perfect NE</u>: player 1 makes (上究,究)

 player 2 { A, If Sz 8 元 (若 Sz > 元, 例就品到 player 1 彻 best response, NE品品)

 R, If Sz < Sz

交替出价 · Alternating - Offer Game → player 2也可以出价3

- Suppose now the two players make alternating offers in each period.
- The common discount factor is $0 < \delta < 1$.
- The three-period bargaining game is:
 - (1a) In the first period, player 1 proposes $s_1(1)$ for himself and $s_2(1)$ for player 2.
 - (1b) Player 2 either accepts the offer to end the game or rejects the offer to continue the game.
 - (2a) In the second period, player 2 proposes $s_1(2)$ for player 1 and $s_2(2)$ for himself.
 - (2b) Player 1 either accepts the offer to end the game or rejects the offer to continue the game.
 - (3) In the third period, player 1 receives a share of s and player 2 receives 1-s, where 0< s<1.
- Let $s_1(3) = s$ and $s_2(3) = 1 s$.
- In general, in period t, $s_1(t)$ and $s_2(t)$ are offered to players 1 and 2, where the offers satisfy

$$s_1(t) + s_2(t) = 1.$$

- The present value of payoff to player i is $\delta^{t-1}s_i(t)$ if the bargaining game is ended in period t.
- We use backwards induction to solve the game.
- In the second period, player 2 is at the move. Because the payoff to player 1 in period 3 is s, player 2 will offer $s_1(2) = \delta s$ to player 1 and $s_2(2) = 1 \delta s$ to himself. Player 1 accepts the offer.
- In the first period, player 1 will offer $\delta(1-\delta s)$ to player 2 and $1-\delta(1-\delta s)$ to himself. Player 2 will accept the offer and the game ends.
- The unique backwards-induction outcome of the three-period game is:
 - Player 1 offers the settlement

$$s_1^*(1) = 1 - \delta(1 - \delta s),$$

 $s_2^*(1) = \delta(1 - \delta s).$

- Player 2 accepts the offer.
- The game ends in period 1.

☆. 71PS. 2星重复博弈!

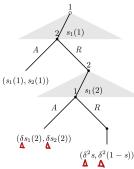


Figure 2: A game tree for the alternating-offer game

五个阶段却是1个 ultimatum 形式的 subgame.

· Alternating - Offer Grame with Infinite Periods.

- Suppose the alternating-offer game is repeated forever until one player accepts an offer.
- The infinite-period game is the same as the three-period bargaining game except that the exogenous settlement in step (3) is replaced by an infinite sequence of steps (3a), (3b), (4a), (4b) and so on.

户仅无限期时可这么做.

- The game beginning in period 3 is identical to the game beginning 万理: 茅 3 期 布系 | 期足相同的博弈. in period 1, because it is also an infinite-period game.
- If there is a unique backwards-induction outcome s, then f(s) = s, where $f(s) = 1 \delta(1 \delta s)$ and hence $s = \frac{1}{1+\delta}$.
- We aim to show the backwards-induction outcome is indeed unique.
- Let s_h be the highest payoff player 1 can receive in any backwards-induction outcome of the game as a whole.
- We can also regard s_h as the third-period payoff for player 1. Then the result of the three-period bargaining game says that, using s_h as the exogenous settlement s,

$$f(s_h) = 1 - \delta(1 - \delta s_h)$$

is a payoff for player 1 in period 1.

- Hence $f(s_h) \leq s_h$, since s_h is also the maximum payoff in period 1.
- Because any first-period payoff for player 1 can be represented in the form of f(s) with some third-period payoff s, there exists a s_3 such that $s_h = f(s_3)$. Because f(s) is an increasing function of s and $s_3 \leq s_h$, then $s_h \leq f(s_h)$. Therefore, we must have $s_h = f(s_h)$.
- Let s_l be the lowest payoff player 1 can receive in any backwards-induction outcome of the game as a whole. Similarly, $f(s_l) = s_l$.
- Solving f(s) = s, we obtain a unique solution $s = \frac{1}{1+\delta}$.
- Therefore $s_h=s_l=\frac{1}{1+\delta}$, which implies that $s^*=\frac{1}{1+\delta}$ is the unique backwards-induction outcome.
- The unique backwards-induction outcome is:
 - In the first period, player 1 offers $s^* = \frac{1}{1+\delta}$ to himself and $1-s^*$ to player 2.
 - Player 2 accepts the offer.
 - The game ends.
- The game has infinitely many periods, but ends at the first period.
- The player with the first move gains a higher payoff (i.e., first-mover advantage).

Lec 10. Static Grames of Incomplete Information

· Introduction

- In the auction example, each player's payoff function is no longer common knowledge ⇒ buyer *i*'s payoff function is not known by other buyers.
- This is an example of <u>incomplete information</u> games, in which at least one player is uncertain about another player's payoff function
- Games of incomplete information are also called <u>Bayesian games</u>.
- Two types of Bayesian games: static vs. dynamic

· Cournot Competition under Asymmetric Information

- Consider the Cournot duopoly model with an inverse demand function P = a Q, where $Q = q_1 + q_2$ and a > 0.
- Firm 1's cost function is $c_1(q_1) = cq_1$.
- Firm 2's cost function is

$$c_2(q_2) = \begin{cases} c_H q_2, & \text{with probability } \theta, \\ c_L q_2, & \text{with probability } 1 - \theta, \end{cases}$$

where $c_L < c_H$ and $0 < \theta < 1$.

- Different from the standard Cournot model, the information is asymmetric:
 - Firm 1's cost function is known by both firms $\Rightarrow c_1(\cdot)$ is common knowledge.
 - Firm 2's cost function is completely known by itself, but not known → 2 英道包花是 CH or CL by firm 1 ⇒ c2(·) is not common knowledge.
- What will be the quantities chosen by the firms?
- Naturally, firm 2 may want to choose a different (and presumably lower) quantity if its marginal cost is high than if it is low.
- Firm 1 should rationally anticipate that firm 2 may tailer its quantity to its cost in this way.
- Let $q_2^*(c_H)$ and $q_2^*(c_L)$ denote firm 2's quantity choices when its marginal cost is c_H and c_L respectively, and let q_1^* denote firm 1's single choice of quantity.
- If firm 2's cost is c_j (j = L, H), it will choose $q_2^*(c_j)$ to solve

$$\max_{q_2} (a - q_1^* - q_2 - c_j) q_2.$$

• Since firm 1 knows that firm 2's marginal cost is c_H with probability of θ and anticipates firm 2 to choose $q_2^*(c_j)$ depending on its cost, firm 1 chooses q_1^* to solve

$$\max_{q_1} \theta(a - q_1 - q_2^*(c_H) - c)q_1 + (1 - \theta)(a - q_1 - q_2^*(c_L) - c)q_1.$$

• The (interior) first-order conditions (or best response functions) for the firms are

$$\begin{array}{rcl} q_2^*(c_H) & = & \frac{a - q_1^* - c_H}{2}, \\ \\ q_2^*(c_L) & = & \frac{a - q_1^* - c_L}{2}, \\ \\ q_1^* & = & \frac{a - \theta q_2^*(c_H) - (1 - \theta) q_2^*(c_L) - c}{2}. \end{array}$$

 \bullet The equilibrium of this game is $(q_1^*,(q_2^*(c_H),q_2^*(c_L))),$ where

$$\begin{array}{rcl} q_1^* & = & \frac{a-2c+\theta \, c_H + (1-\theta) \, c_L}{3}, \\ \\ q_2^*(c_H) & = & \frac{a-2c_H + c}{3} + \frac{1-\theta}{6} (c_H - c_L), \\ \\ q_2^*(c_L) & = & \frac{a-2c_L + c}{3} - \frac{\theta}{6} (c_H - c_L). \end{array}$$

- We know $q_2^*(c_H) < q_2^*(c_L) \Rightarrow$ firm 2 produces less when its marginal cost increases.
- Firm 2 has two payoff functions

$$\pi_2(q_1, q_2; c_L) = (a - q_1 - q_2 - c_L)q_2,$$

 $\pi_2(q_1, q_2; c_H) = (a - q_1 - q_2 - c_H)q_2.$

• Firm 1 has only one payoff function

$$\pi_1(q_1, q_2; c) = (a - q_1 - q_2 - c)q_1.$$

e.g. Auction.

- Suppose a seller wants to sell a product among a group of buyers.
- Each buyer is willing to pay v_i for the product, where v_i is buyer i's private information, i.e., only buyer i knows its valuation v_i , but not all other buyers or the seller.
- In order to sell the product, the seller runs an auction (e.g., first-price, second-price).
- Each buyer must bid for the product in order to be the winner.

• This is an example of (static) Bayesian games.

· Static Bayesian Games

- Consider a general static Bayesian game.
- Let player i's possible payoff function be $u_i(a_1, \ldots, a_n; t_i)$, where a_i is player i's action and t_i is called player i's **type**, which belongs to a set of possible types T_i or type space).
- Player i's type t_i is his private information, and each type t_i corresponds to a different payoff function of player i.
- Let $t_{-i} = (t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n)$ be the types of other players and T_{-i} be the set of all t_{-i} .
- Player i is uncertain about other players' types, but only knows the probability distribution $\underline{p_i(t_{-i}|t_i)}$ on T_{-i} , which is i's **belief** about other players' types, given \vec{i} 's knowledge of his own t_i .

The **normal-form representation** of an *n*-player static Bayesian Det. game specifies players'

- 1) action spaces A_1, \ldots, A_n ,
- 2) type spaces T_1, \ldots, T_n ,
- 3) beliefs p_1, \ldots, p_n ,
- 4) payoff functions u_1, \ldots, u_n .

We denote this game by

$$G = \{A_1, \ldots, A_n; T_1, \ldots, T_n; p_1, \ldots, p_n; u_1, \ldots, u_n\}.$$

- In the Cournot game with asymmetric information,
 - $A_1 = A_2 = [0, \infty);$
 - $T_1 = \{c\}$, and $T_2 = \{c_H, c_L\}$;
 - $p_1(c_H|c) = \theta$, $p_1(c_L|c) = 1 \theta$, and $p_2(c|c_H) = p_2(c|c_L) = 1$;
 - $\bullet\,$ Payoff functions are

$$\pi_1(q_1, q_2; c) = (a - q_1 - q_2 - c)q_1,
\pi_2(q_1, q_2; c_L) = (a - q_1 - q_2 - c_L)q_2,
\pi_2(q_1, q_2; c_H) = (a - q_1 - q_2 - c_H)q_2.$$

明月

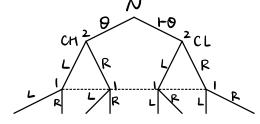
- The timing of a static Bayesian game:
 - 1. Nature draws a type vector $t = (t_1, \ldots, t_n)$, where $t_i \in T_i$;
 - Nature reveals t_i to player i, but not to any other players;
 - 3. The players simultaneously choose actions, player i choosing $a_i \in A_i$;
 - 4. Payoffs $u_i(a_1, \ldots, a_n; t_i)$ are received.
- By introducing the frictional moves by nature in (1) and (2), we have described a game of incomplete information as a game of imperfect information.
- We often assume that the nature draws $t = (t_1, \ldots, t_n)$ according to the prior probability distribution p(t), which is common knowledge.
- Then the belief $p_i(t_{-i}|t_i)$ can be computed by **Bayes' rule**

$$p_i(t_{-i}|t_i) = \frac{p(t_{-i}, t_i)}{\sum_{t'_{-i} \in T_{-i}} p(t'_{-i}, t_i)}.$$

- \bullet First, there are games in which player i has private information not only about his or her own payoff function but also about another player's payoff function. We write player i's payoff function as $u_i(a_1,\ldots,a_n;t_1,\ldots,t_n)$.
- Second, we typically assume that players' types are independent, i.e., $p_i(t_{-i}|t_i)$ does not depend on t_i , which can be denoted by $p_i(t_{-i})$. But $p_i(t_{-i})$ is still derived from the prior distribution p(t).

e.g. for Cournet Grame above.

→某个player可以掌握其它人的信息



In the static Bayesian game

不同美型的 player 全怎么行动。 $G = \{A_1, \ldots, A_n; T_1, \ldots, T_n; p_1, \ldots, p_n; u_1, \ldots, u_n\}, \text{ a strategy for}$ player i is a function $s_i(t_i)$, i.e., $s_i: T_i \to A_i$. For given type t_i , $s_i(t_i)$ gives an action of player i. Player i's **strategy space** S_i is the set of all functions from T_i into A_i .

• In the previous example, $(q_2^*(c_H), q_2^*(c_L))$ is a strategy for firm 2, while q_1^* is a strategy for firm 1.

· Bayesian NE

In the static Bayesian game

Def. $G = \{A_1, \dots, A_n; T_1, \dots, T_n; p_1, \dots, p_n; u_1, \dots, u_n\}$, the strategies $s^* = (s_1^*, \dots, s_n^*)$ are a (pure-strategy) Bayesian Nash equilibrium if for each player i and for each of i's types $t_i \in T_i$, $s_i^*(t_i)$ solves

 $\max_{a_i \in A_i} \sum_{t_{-i} \in T_{-i}} u_i(s_{-i}^*(t_{-i}), a_i; t_i) \underline{p_i(t_{-i}|t_i)}. \quad \text{7.48}$

- In a general finite static Bayesian game (finite players, finite actions, and finite types), a Bayesian Nash equilibrium exists, perhaps in mixed strategies.
- In a Bayesian Nash equilibrium, each player's strategy is a best response to other players' strategies.
- In other words, no player wants to change his or her strategy imilaterally given other players' equilibrium strategies, even if the change involves only one action by one type.
- A Bayesian Nash equilibrium is simply a Nash equilibrium in a Bayesian game.
- In the Cournot game with asymmetric information, the strategies $(q_1^*,(q_2^*(c_H),q_2^*(c_L)))$ are a Bayesian Nash equilibrium since neither firm 1 nor firm 2 wants to deviate from its equilibrium strategy.

· Mixed Strategies Revisited

• Consider the game of battle of the sexes

		Wife		
		Opera	Football	
Husband	Opera	1,2	0,0	
nuspanu	Football	0,0	2, 1	

- There are three possible Nash equilibria: (Opera, Opera), (Football, Football) and $(\frac{1}{3}\text{Opera} + \frac{2}{3}\text{Football}, \frac{2}{3}\text{Opera} + \frac{1}{3}\text{Football})$.
- In the mixed-strategy Nash equilibrium, the husband plays Opera with probability 1/3 and Football with probability 2/3, while the wife plays Opera with probability 2/3 and Football with probability 1/3.
- Suppose the couple are uncertain about the payoffs for each other.
- Consider the following payoff matrix

		Wife		
		Opera	Football	
Husband	Opera	$1, 2 + t_w$	0,0	
Husband	Football	0.0	$2 + t_b$. 1	

- Here t_w is privately known by the wife, while t_h is privately known by the husband.
- \bullet Assume that t_w and t_h are independently drawn from a uniform distribution on [0, x], where x > 0.
- The normal-form representation of this static Bayesian game is $G = \{A_h, A_w; T_h, T_w; p_h, p_w; u_h, u_w\}:$
 - $\begin{array}{l} \bullet \ A_h = A_w = \{ \text{Opera, Football} \}; \\ \bullet \ T_h = T_w = [0,x]; \end{array}$

 - The husband believes that t_w (the wife believes that t_h) is uniformly distributed on [0, x];
 - u_h and u_w are given before.
- What are players' strategies?
- \bullet We can construct a Bayesian Nash equilibrium $(s_h^*,s_w^*),$ where

$$s_h^* = \begin{cases} \text{Football,} & \text{if } t_h > \overline{t}_h, \\ \text{Opera,} & \text{if } t_h \leq \overline{t}_h, \end{cases} \text{ and } s_w^* = \begin{cases} \text{Opera,} & \text{if } t_w > \overline{t}_w, \\ \text{Football,} & \text{if } t_w \leq \overline{t}_w. \end{cases}$$

- Note \bar{t}_h and \bar{t}_w are two critical values, which need to be determined.
- In the Bayesian Nash equilibrium, the husband will choose Football if t_h exceeds the critical value \bar{t}_h , and choose Opera
- Given the wife's strategy, the husband's expected payoffs of choosing Opera and Football are $P(t_w > \overline{t_w}) = P(t_w)$ $u_h(\text{Opera}, s_w^* | t_h) = Pr(s_w^* = \text{Opera}) \cdot 1 + Pr(s_w^* = \text{Football}) \cdot 0$

$$\begin{aligned} u_h(\text{Opera}, s_w^* | t_h) &= & \Pr(s_w^* = \text{Opera}) \cdot 1 + \Pr(s_w^* = \text{Football}) \cdot \\ &= & \left(1 - \frac{\overline{t}_w}{x}\right) \cdot 1 + \frac{\overline{t}_w}{x} \cdot 0 = 1 - \frac{\overline{t}_w}{x}, \end{aligned}$$

$$u_h(\text{Football}, s_w^*|t_h) = \left(1 - \frac{\overline{t}_w}{x}\right) \cdot 0 + \frac{\overline{t}_w}{x} \cdot (2 + t_h) = \frac{\overline{t}_w}{x}(2 + t_h).$$

• Thus, choosing Opera is optimal iff

$$1 - \frac{\bar{t}_w}{x} \ge \frac{\bar{t}_w}{x} (2 + t_h) \Leftrightarrow t_h \le \underline{\bar{t}_h} = \frac{x}{\bar{t}_w} - 3. \tag{1}$$

Similarly, given the husband's strategy, the wife's expected payoffs
of playing Opera and Football are

$$u_w(\text{Opera}, s_h^*|t_w) = \frac{\overline{t}_h}{x} \cdot (2 + t_w) + \left(1 - \frac{\overline{t}_h}{x}\right) \cdot 0 = \frac{\overline{t}_h}{x} (2 + t_w),$$

and

$$u_w(\text{Football}, s_h^*|t_w) = \frac{\overline{t}_h}{x} \cdot 0 + \left(1 - \frac{\overline{t}_h}{x}\right) \cdot 1 = 1 - \frac{\overline{t}_h}{x}.$$

• Thus, choosing Football is optimal iff

$$1 - \frac{\overline{t}_h}{x} \ge \frac{\overline{t}_h}{x} (2 + t_w) \Leftrightarrow t_w \le \underline{\overline{t}_w} = \frac{x}{\overline{t}_h} - 3.$$
 (2)

- Solving (1) and (2) simultaneously, we obtain $\bar{t}_h = \bar{t}_w = \frac{\sqrt{9+4x}-3}{2}$.
- In equilibrium, the husband plays Opera with probability p^* and Football with probability $1 p^*$, while the wife plays Football with probability p^* and Opera with probability $1 p^*$, where

$$p^* = \frac{\overline{t}_h}{x} = \frac{\overline{t}_w}{x} = \frac{2}{\sqrt{9+4x+3}}.$$

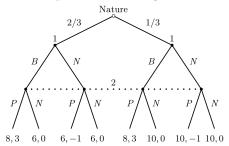
- When $x \to 0$, we get that $p^* \to \frac{1}{3}$.
- As the incomplete information disappears, the players' behavior in this pure-strategy Bayesian Nash equilibrium approaches their behavior in the mixed-strategy Nash equilibrium in the original game of complete information.

· A Trading Game.

- Suppose a seller can procure a product at a cost of c = 1.
- A buyer wants to buy the good, and is willing to pay $v_0 = 12$.
- The buyer can also purchase the good from other places, where the valuation is his private information.
- The seller knows that the distribution of the valuation for the outside option is either v = 10 or v = 14, each with a probability of 2/3 and 1/3, respectively.
- The price of the good is p = 4, which is exogenous and independent of where the buyer makes a purchase.
- All c, v_0 and p are common knowledge among both players.
- The seller decides whether to procure the good, and the buyer simultaneously decides whether to order the good from the seller.
- If the seller procures the good, its payoff is $\underline{p-c}$ if the buyer makes a purchase, and $\underline{-c}$ otherwise.
- If the seller does not procure the good, its payoff is zero regardless of the buyer's choice.
- The buyer's payoff is $\underline{v_0 p}$ if he buys from the seller, and $\underline{v p}$ otherwise.
- What should the seller and the buyer do?

这么写的原因: 决柬町. Seller 可用的信息 只有期望,而 Buyer 知道自己 旬类型 并播比(做"决策. → husband 最优的条件 +wife 最优的条件。 U 词描足时即为临界值。二人均最优

• The extensive-form representation of the game:



- Player 1 is the buyer and player 2 is the seller.
- Normal-form representation of the game:
 - Action spaces: $A_1 = \{B, N\} \text{ and } A_2 = \{P, N\};$
 - Type spaces: $T_1 = \{10, 14\}$ and $T_2 = \{1\}$;
 - Beliefs: the buyer's belief on the seller's type is 1 on {1}, and the seller's belief on the buyer's types is 2/3 on 10 and 1/3 on 14;
 - Payoffs are given as above.
- Strategy spaces: $S_1 = \{BB, BN, NB, NN\}$ and $S_2 = \{P, N\}$
 - The meaning of BN: the buyer with outside option 10 chooses "to buy" and with outside option 14 chooses "not to buy".
- Alternatively, we can use the following matrix to represent the game:

		Buyer			
	BB	BN	NB	NN	
Seller F	3, 8, 8	5/3, 8, 10	1/3, 6, 8	-1, 6, 10	
Seller N	V = 0, 6, 10	0, 6, 10	0, 6, 10	0, 6, 10	

- For example, consider the outcome (P, BN):
 - the buyer with type 10 receives $v_0 p = 8$, and with type 14 receives v p = 10;
 - the seller's expected payoff is $3 \times 2/3 1 \times 1/3 = 5/3$.
- In particular, we can consider two types of the buyer as two players and we can solve the Bayesian Nash equilibria in the above (like three-player) normal-form representation of the game.
- We first find out the best response functions for each of the "three players" (the seller and each type of the buyer).

		Buyer			
		BB	BN	NB	NN
Seller	P	<u>3</u> , <u>8</u> , 8	5/3, 8, 10	1/3, 6, 8	$-1, 6, \underline{10}$
	N	$0, \underline{6}, \underline{10}$	$0, \underline{6}, \underline{10}$	$0, \underline{6}, \underline{10}$	0, 6, 10

• Two Bayesian Nash equilibria: (P, BN) and (N, NN).

Lec 11 Auctions

· Introduction

- One of the most popular examples of static games of incomplete information is an auction.
- An auction is a mechanism of allocating goods.
- Advantages of auctions:
 - a simple way of determining the market-based prices
 - more flexible than setting a fixed price
 - can usually achieve efficiency by allocating the resources to those who value them most highly

· Types of Auctions

- Number of objects
 - A single object or many?
- Open vs. sealed-bid 密封银价
 - Do you know the bids of other participants?
- One-sided vs. two-sided
 - Do buyers and sellers both submit bids, or just buyers?
- Private value vs. common value
 - Do bidders have the same valuation for the object?

4 Classical Auctions

- English: ascending, open Dutch: descending, open
- First-price, sealed-bid
- Second-price, sealed-bid (or Vickrey)

Sealed - Bid Auction. · A Second - Price

- ullet Suppose there are n potential buyers (or bidders), with valuations v_1, \ldots, v_n for an object.
- Suppose v_i belongs to the set V_i for all i.
- Bidders know their own valuation but do not know other bidders' valuations.
- The bidders simultaneously submit bids $b_i \in [0, \infty)$.
- The highest bidder wins the object and pays the second highest bid, while the other bidders obtain nothing.
- If there are more than one winners, the object is allocated randomly among them.
- Let r_i be the highest bid of all players other than player i, where $r_i = \max_{j \neq i} b_j.$
- ullet The bidder i's payoff function is

$$u_i(b_i, b_{-i}; v_i) = \begin{cases} v_i - r_i, & \text{if } b_i > r_i; \\ \frac{v_i - r_i}{k}, & \text{if } b_i = r_i; \\ 0, & \text{if } b_i < r_i, \end{cases}$$

where k is the number of bids that equal b_i .

Consider a strategy profile (s_1^*, \ldots, s_n^*) in a static Bayesian game. Suppose for any player i, any $t_i \in T_i$, $a_i \in A_i$, and $a_{-i} \in A_{-i}$,

$$u_i(s_i^*(t_i), a_{-i}; t_i) \ge u_i(a_i, a_{-i}; t_i),$$

(i.e., $s_i^*(t_i)$ weakly dominates every $a_i \in A_i$). Then (s_1^*, \dots, s_n^*) is a Bayesian Nash equilibrium.

• **Proof:** Because $s_{-i}^*(t_{-i}) \in A_{-i}$, the weak dominance implies

$$u_i(s_i^*(t_i), s_{-i}^*(t_{-i}); t_i) \ge u_i(a_i, s_{-i}^*(t_{-i}); t_i)$$

→ 弱占优 ⇒NE. (但从-定雁-)

for any $t_i \in T_i$ and $a_i \in A_i$.

• Then $s_i^*(t_i)$ solves

$$\max_{a_i \in A_i} \sum_{t_{-i} \in T_{-i}} u_i(a_i, s_{-i}^*(t_{-i}); t_i) p_i(t_{-i}|t_i),$$

for all t_i and for all i.

• Therefore, (s_1^*, \ldots, s_n^*) is a Bayesian Nash equilibrium.

- Each player i's strategy is a function s_i from V_i into $[0, \infty)$.
- For player i, consider the strategy of bidding his true valuation s_i^* , where $s_i^*(v_i) = v_i$ for all $v_i \in V_i$.
- We can show that for any v_i , $s_i^*(v_i) = v_i$ weakly dominates all other bids.
- First, compare $s_i^*(v_i) = v_i$ with $b_i > v_i$:

别人的报价

$$u_i(v_i,b_{-i};v_i) = \begin{cases} 0, & \text{if } \vec{r_i} > b_i; \\ 0, & \text{if } \vec{r_i} > b_i; \\ 0, & \text{if } r_i = b_i; \\ v_i - r_i & \text{if } r_i \leq v_i. \end{cases}$$

$$u_i(v_i,b_{-i};v_i) = \begin{cases} 0, & \text{if } \vec{r_i} > b_i; \\ \frac{v_i - r_i}{k}, \text{o if } r_i = b_i; \\ v_i - r_i, \text{o if } v_i < r_i < b_i; \\ v_i - r_i, & \text{if } r_i \leq v_i. \end{cases}$$

- Then $s_i^*(v_i) = v_i$ weakly dominates $b_i > v_i$.
- Second, compare $s_i^*(v_i) = v_i$ with $b_i < v_i$:

$$u_i(v_i, b_{-i}; v_i) = \begin{cases} 0, & \text{if } r_i \geq v_i; \\ v_i - r_i, & \\ v_i - r_i, & \\ v_i - r_i & \end{cases} \geq u_i(b_i, b_{-i}; v_i) = \begin{cases} 0, & \text{if } r_i \geq v_i; \\ 0, & \text{if } b_i < r_i < v_i; \\ \frac{v_i - r_i}{k}, & \text{if } r_i = b_i; \\ v_i - r_i, & \text{if } r_i < b_i. \end{cases}$$

- Then $s_i^*(v_i) = v_i$ weakly dominates $b_i < v_i$.
- Since $s_i^*(v_i) = v_i$ weakly dominates all b_i for any v_i and any player i, by the previous proposition, (s_1^*, \ldots, s_n^*) is a Bayesian Nash equilibrium.

· A First - Price Sealed - Bid Auction

- Suppose there are two bidders: i = 1, 2.
- The bidders' valuations for an object are v_1 and v_2 , which are independently and uniformly distributed on [0, 1].
- The valuation v_i is bidder i's private information, which is unknown to the other bidder.
- \bullet Bidders submit their bids b_1 and b_2 simultaneously.
- The higher bidder wins the object and pays the highest bid, while the other obtains nothing.
- If there is a tie, the winner is determined by a flip of a coin.
- The normal-form representation of this static Bayesian game is $G = \{A_1, A_2; T_1, T_2; p_1, p_2; u_1, u_2\}$:
 - $A_1 = A_2 = [0, \infty)$, and each bid is $b_i \in A_i$;
 - $T_1 = T_2 = [0, 1]$, and each valuation is $v_i \in T_i$;
 - Player i believes that v_j is uniformly distributed on [0,1];
 - The payoff $u_i(b_i, b_j; v_i)$ is

$$u_i(b_i, b_j; v_i) = \begin{cases} v_i - b_i, & \text{if } b_i > b_j; \\ \frac{1}{2}(v_i - b_i), & \text{if } b_i = b_j; \\ 0, & \text{if } b_i < b_j. \end{cases}$$

- Bidder \vec{i} 's strategy is a function $s_i(v_i)$ from [0,1] into $[0,\infty)$.
- (s_1^*, s_2^*) is a Bayesian Nash equilibrium if and only if for i = 1, 2 and each $v_i \in [0, 1], s_i^*(v_i)$ solves

$$\max_{b_i \geq 0} E_{v_j} u_i(b_i, s_j^*(v_j); v_i)$$

$$= \max_{b_i \geq 0} \left\{ (v_i - b_i) \Pr\{b_i > s_j^*(v_j)\} + \frac{1}{2} (v_i - b_i) \Pr\{b_i = s_j^*(v_j)\} \right\}$$

- There may be many Bayesian Nash equilibria in this game.
- We focus on equilibria in the form of linear functions:

$$s_1^*(v_1) = a_1 + c_1 v_1$$
, and $s_2^*(v_2) = a_2 + c_2 v_2$,

where $c_i > 0$, and $0 \le a_i < 1$ for i = 1, 2.

- To solve for the Bayesian Nash equilibria, we just need to find out the coefficients a_i and c_i accordingly.
- Rationale of the assumptions on a_i and c_i :
 - $c_i > 0$: a bidder with higher valuation is willing to bid higher
 - $\overline{a_i \geq 0}$: bids cannot be negative
 - $a_i < 1$: for $a_i \ge 1$, bidder i can never end up with a positive payoff given $v_i \in [0, 1]$
- We need to determine each player's best response given the other's strategy.
- Suppose player j adopts a linear strategy $s_j^*(v_j) = a_j + c_j v_j$ in equilibrium, where $c_j > 0$.
- We have

$$\Pr(b_i = a_j + c_j v_j) = \Pr\left(v_j = \frac{b_i - a_j}{c_j}\right) = 0$$
. 英国報義 かっこ

• For any $v_i \in [0,1]$, player i's best response b_i maximizes

$$(v_i - b_i)\Pr(b_i > a_j + c_j v_j) = (v_i - b_i)\Pr\left(v_j < \frac{b_i - a_j}{c_j}\right).$$

法2. (更同单)

- Alternatively, if we can somehow guess that $(s_1^*(v_1), s_2^*(v_2)) = (v_1/2, v_2/2)$ is a Bayesian Nash equilibrium, we can prove it directly.
- Suppose player j has adopted the strategy $s_i^*(v_j) = v_j/2$.
- Player *i*'s best response b_i solves $\sim \Pr\{v_{\hat{j}} < 2b\hat{i}\} = \frac{2b\hat{i}}{Fo}$

$$\max_{b_i \in [0,1/2]} (v_i - b_i) \Pr(b_i > v_j/2) = \max_{b_i \in [0,1/2]} 2(v_i - b_i) b_i.$$

- For any $v_i \in [0,1]$, the unique maximizer is $b_i^* = v_i/2$.
- Thus $(s_1^*(v_1), s_2^*(v_2)) = (v_1/2, v_2/2)$ is a Bayesian Nash equilibrium.

- Since $s_j^*(v_j) = a_j + c_j v_j \in [a_j, a_j + c_j]$, we can restrict our attention to $b_i \in [a_j, a_j + c_j]$ (i.e., $b_i < a_j$ is pointless, while $b_i > a_j + c_j$ is not rational).
- Under the above restriction, we know that

$$0 \le \frac{b_i - a_j}{c_i} \le 1.$$

• Player i's best response b_i solves

$$\max_{a_j \leq b_i \leq a_j + c_j} (v_i - b_i) \frac{b_i - a_j}{c_j}.$$
• The best response of player i is
$$s_i(v_i) = \begin{cases} a_j, & \text{if } v_i \leq a_j; \\ \frac{1}{2}(v_i + a_j), & \text{if } \underline{a_j < v_i \leq a_j + 2c_j;} \\ a_j + c_j, & \text{if } v_i > a_j + 2c_j. \end{cases}$$

- We want the equilibrium bid to be a linear function on [0,1].
- There are three cases:

$$[0,1] \subseteq \begin{cases} (-\infty, a_j] \\ [a_j, a_j + 2c_j] \\ [a_j + 2c_j, \infty) \end{cases}$$

- Case 1 violates the assumption $a_j < 1$.
- Case 3 violates the assumptions $a_j \ge 0$ and $c_j > 0$, which imply $a_j + 2c_j > 0$.
- Therefore, we have $[0,1] \subseteq [a_j, a_j + 2c_j]$, and the best response is

$$s_i(v_i) = \frac{1}{2}(v_i + a_j).$$

• In a Bayesian Nash equilibrium,

$$s_i^*(v_i) = a_i + c_i v_i = \frac{1}{2}(v_i + a_j)$$

for all $v_i \in [0, 1]$.

• Then we have

$$a_i = \frac{1}{2}a_j$$
, and $c_i = \frac{1}{2}$

for i, j = 1, 2 and $i \neq j$.

• Therefore

$$a_1 = a_2 = 0$$
, and $c_1 = c_2 = \frac{1}{2}$.

• The unique linear Bayesian Nash equilibrium is

$$s_1^*(v_1) = \frac{1}{2}v_1$$
, and $s_2^*(v_2) = \frac{1}{2}v_2$.

(不多) (见Slides)

· A Double Auction

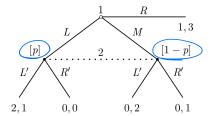
ス部花的ない更。
$$\frac{1}{2}(Vi+aj) < Vi \Rightarrow aj < Vi$$
 $\frac{1}{2}(Vi+aj) \leq aj + cj \Rightarrow Vi \leq aj + 2cj$ 从 $\frac{1}{2}(Vi+aj) \leq aj + cj$ 得出。 $\frac{1}{2}(Vi+aj)$

Lec 12 Perfect Bayesian Equilibrium.

· Requirements

以多次的联单在不同的 node b

- 1) At each information set, the player with the move must have a belief about which node in the information set has been reached by the play of the game. For a nonsingleton information set, a belief is a probability distribution over the nodes in the information set; for a singleton information set, a belief puts probability one on the single decision node.
 - In Example 1, Requirement 1 implies that if player 2's nonsingleton information set is reached, player 2 must form a belief on which of the decision node has been reached, i.e., player 2 believes that player 1 has chosen L with probability p, and M with probability 1 - p, where $p \in [0, 1]$.



- 2) Given their beliefs, the players' strategies must be sequentially rational. That is, at each information set, the action taken by the player with the move (and the player's subsequent strategy) must be optimal, given the player's belief at that information set and the other players' subsequent strategies (where a "subsequent strategy" is a complete plan of action covering every contingency that might arise after the given information set has been reached).
 - Given this belief, player 2's expected payoffs are
 - playing L': $p \cdot 1 + (1 p) \cdot 2 = 2 p$ playing R': $p \cdot 0 + (1 p) \cdot 1 = 1 p$
 - Since R' is never optimal for any belief, (R, R') cannot satisfy Requirement 2.
 - Requirements 1 and 2 together can already eliminate the equilibrium (R, R') which relies on a non-credible threat.
 - Requirements 1 and 2 allow for arbitrary beliefs, including unreasonable ones. Further requirements on players' beliefs need to be introduced.

For a given equilibrium in a given extensive-form game, an information set is on the equilibrium path if it will be reached with positive probability if the game is played according to the equilibrium strategies, and is $\underline{\mathbf{off}}$ the $\underline{\mathbf{equilibrium}}$ $\underline{\mathbf{path}}$ if it is definitely not to be reached if the game is played according to the equilibrium strategies.

- In Example 1, player 1's singleton information set is always on the equilibrium path.
- Consider player 2's nonsingleton information set.
- For the equilibrium (L, L'), the nonsingleton information set is on the equilibrium path.
- For the equilibrium (R, R'), the nonsingleton information set is off the equilibrium path.
- 3) At information sets on the equilibrium path, beliefs are determined by Bayes' rule and the players' equilibrium strategies.

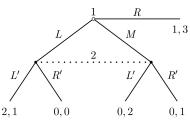
(条件相玩学)

- In Example 1, for the equilibrium (L, L'), Requirement 3 implies that player 2's belief must be p=1.
- Consider a hypothetical situation: the game has a mixed-strategy equilibrium in which player 1 plays L with probability q_1 , M with probability q_2 , and R with probability $1 - q_1 - q_2$. Requirement 3 would force player 2's belief to be →13图:L和M在同一信息集中。

$$p = \text{Prob}(L \text{ is played } | \underline{L \text{ or } M \text{ is played}}) = \frac{q_1}{q_1 + q_2}$$

· lead in example

• Example 1:



- What are the pure-strategy Nash equilibria and subgame-perfect Nash equilibria in this game?
- The normal-form representation of the game is

		Player 2		
		L'	R'	
	L	2, 1	0,0	
Player 1	M	0, 2	0,1	
	R	1,3	1,3	

• Two pure-strategy Nash equilibria:

$$(L, L')$$
 and (R, R')

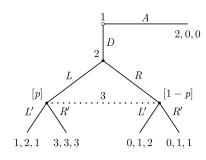
- Since the above game has no subgames, both (L, L') and (R, R')are subgame-perfect Nash equilibria.
- However, (R, R') is based on a non-credible threat from player 2.
- On the one hand, if player 1 believes player 2's threat of playing R', then player 1 should choose R to end the game with payoff 1, which is larger than 0 by choosing L or M.
- On the other hand, if player 1 doesn't believe the threat and plays L or M, then when player 2 gets the move, he will indeed choose L', since L' is strictly better than R' for player 2.
- Thus, the threat of playing R' by player 2 is not credible.
- In Example 1, the equilibrium (R, R') is not reasonable as it depends on a non-credible threat.
- We need to strengthen the equilibrium concept to rule out some subgame-perfect Nash equilibria like (R, R').
- A stronger equilibrium concept \Rightarrow **perfect Bayesian** equilibrium
- Here the "equilibrium" can mean Nash equilibrium, subgame-perfect Nash equilibrium, Bayesian Nash equilibrium or perfect Bayesian equilibrium.

> 具は1葉作: 双于五个3博车精炼NE. Ta其中 是否含有可到达的信息集. 再用 Requirment 3/4.

- 4) At information sets off the equilibrium path, beliefs are determined by Bayes' rule and the players' equilibrium strategies where possible.
 - In Example 1, for the equilibrium (R, R'), Requirement 4 does not put any restrictions on player 2's belief p.

e.g.

• Example 2:



- What are the (pure-strategy) Nash equilibria and subgame-perfect Nash equilibria of this game? Are they also perfect Bayesian
- The normal-form representation of the game:

	L	R
A	$\underline{2},\underline{0},\underline{0}$	$\underline{2},\underline{0},\underline{0}$
D	1, 2, 1	0, 1, 2

$$\begin{array}{c|cccc} & L & R \\ A & 2, \underline{0}, \underline{0} & \underline{2}, \underline{0}, \underline{0} \\ D & \underline{3}, \underline{3}, \underline{3} & 0, 1, 1 \end{array}$$

Player 3 chooses L'

Player 3 chooses R'

- \bullet Player 1 chooses the row, player 2 chooses the column and player 3 chooses the matrix.
- Four pure-strategy Nash equilibria:

$$(A, L, L'), (A, R, L'), (A, R, R'), \text{ and } (D, L, R')$$

- The game has a unique subgame (beginning at player 2's singleton information set), and the unique Nash equilibrium of this subgame is (L, R').
- Hence, the unique subgame-perfect Nash equilibrium of the game is (D, L, R').
- The other three Nash equilibria are not subgame-perfect.
- Check whether each equilibrium is a perfect Bayesian equilibrium. 提及異位 requirment 1-4.
- Consider the subgame-perfect Nash equilibrium (D, L, R').
- These strategies and the belief p = 1 for player 3 satisfy Requirements 1-3.
- They also satisfy Requirement 4, since there is no information set off the equilibrium path
- Then the strategies (D, L, R') and the belief p = 1 indeed constitute a perfect Bayesian equilibrium.
- The other three Nash equilibria do not satisfy all Requirements 1-4.
- For example, consider the Nash equilibrium (A, L, L').
- Requirement 4 implies that for player 3's nonsingleton information set off the equilibrium path, player 3's belief must be p=1.
- Requirement 2 then implies that for p = 1, player 3 must choose R' rather than L'.
- Therefore, the strategies (A, L, L') and the belief p = 1 do not satisfy Requirements 1 to 4, and they are not a perfect Bayesian equilibrium.

◆Note: 個12円用面例2可用的万回: 例2中. Player 2 "格" 了一下, i.e. player 2 有正概年这 L/R. ⇒ 用 Bayes

在例2中, 准验(A.L.U). 若1块口(家际上20可能发生)

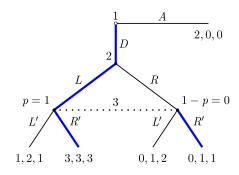
M可用Bayes' 法刚·P=丁=1.

Si PLI 选D) E1:P(2次R)

e.g. 不够解出 p≤== 但 家际上 Player 2 一定家行し.

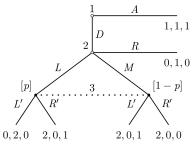
Hint: 图 requirment 2 阿爾出 P的临界值号。 用 requirment 4 阿爾出 P=1.

⇒ (A.L.L') 色 (P≤= 分P=1).



Perfect Bayesian equilibrium in Example 2: ((D, L, R'); p = 1)

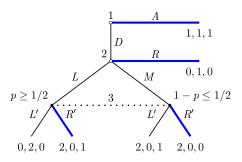
• Example 3:



 \bullet Three pure-strategy Nash equilibria:

$$(A, L, L'), (A, R, L'), \text{ and } (A, R, R')$$

- Consider the strategies (A, L, L') and the belief $p \leq 1/2$, which satisfy Requirements 1 to 3.
- Requirement 4 implies that for player 3's information set off the equilibrium path, the belief must be p=1, which contradicts $p \le 1/2$.
- Therefore, there exists no belief together with the strategies (A, L, L') that constitutes a perfect Bayesian equilibrium.
- Consider strategies (A, R, L') and the belief $p \leq 1/2$.
- They satisfy Requirement 4, which puts no restrictions on player 3's belief at the information set off the equilibrium path.
- They also satisfy Requirements 1 and 3.
- However, at player 2's singleton information set, player 2 should choose L rather than R given player 3's equilibrium strategy, which implies that Requirement 2 is violated.
- Thus, strategies (A,R,L') and the belief $p \leq 1/2$ do not constitute a perfect Bayesian equilibrium.
- Consider the strategies (A, R, R') and the belief $p \ge 1/2$.
- They satisfy all Requirements 1-4, and thus constitute a perfect Bayesian equilibrium.



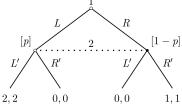
Perfect Bayesian equilibrium in Example 3: ((A, R, R'); p > 1/2)

- The procedure to determine whether a given equilibrium is a perfect Bayesian equilibrium:
 - (1) <u>Determine a belief for each information set by Bayes' rule;</u>
 - (2) Check whether the equilibrium is optimal given each belief determined in (1) and the subsequent strategies.
- A perfect Bayesian equilibrium consists not only strategies but also beliefs of players, and it requires each player's strategy to be optimal given his or her reasonable beliefs.

· Relationship between Different Equilibrium Concepts

- <u>Perfect Bayesian equilibrium</u> is a <u>stronger equilibrium</u> concept that relines different types of equilibria.
- On the one hand, it refines Bayesian Nash equilibrium (in the same way as subgame-perfect Nash equilibrium refines Nash equilibrium).
- On the other hand, it strengthens subgame-perfect Nash equilibrium by explicitly analyzing beliefs.
- In addition, while a Nash equilibrium requires that no player chooses a strictly dominated strategy, a perfect Bayesian equilibrium requires no player's strategy to be strictly dominated beginning at any information set.
- Perfect Bayesian equilibrium corresponds to
 - Nash equilibrium (with appropriate beliefs) in static games of complete information;
 - Bayesian Nash equilibrium in static games of incomplete information;
 - subgame-perfect Nash equilibrium (with appropriate beliefs) in dynamic games of complete and perfect information (and also many dynamic games of complete but imperfect information).

• Example 4:



• Three perfect Bayesian equilibria:

$$\begin{split} &((L,L');p=1),((R,R');p=0),\\ \text{and} &\qquad \left(\left(\frac{1}{3}L+\frac{2}{3}R,\frac{1}{3}L'+\frac{2}{3}R'\right);p=1/3\right) \end{split}$$

• The normal-form representation of the game is

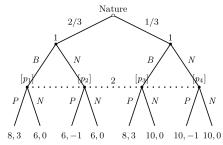
• Three Nash equilibria:

$$(L, L'), (R, R'), \text{ and } \left(\frac{1}{3}L + \frac{2}{3}R, \frac{1}{3}L' + \frac{2}{3}R'\right)$$

 Each Nash equilibrium (together with a correct belief) corresponds to a perfect Bayesian equilibrium in this static game of complete information.

e.g.

• Example 5:



- \bullet Two (pure-strategy) Bayesian Nash equilibria: (BN,P) and (NN,N)
- Two (pure-strategy) perfect Bayesian equilibria:

$$((BN, P); p_1 = 2/3, p_4 = 1/3), ((NN, N); p_2 = 2/3, p_4 = 1/3)$$

- Consider the first equilibrium, for example.
- For the strategy BN chosen by player 1, Requirement 3 implies that the belief is $p_1=2/3$ and $p_4=1/3$.
- \bullet Given this belief, it is optimal for player 2 to choose P.
- Given player 2's strategy P, it is optimal for player 1 type 1 to choose B, and type 2 to choose N.

Strategic models where informed agents take some observable actions before uninformed agents make their strategic decisions

- Signaling games are a relatively simple setting in which to study
 - how players update beliefs based on observed actions (signals);
 - how players try to strategically reveal or conceal private information by their choice of actions.

· Signaling Games

- A simple signaling game is a dynamic game of incomplete information involving two players: a Sender (S) and a Receiver (R). (沒有私人信息)
- The timing of the game is as follows:
 - 1. Nature draws a type t_i for the Sender from a set of feasible types $T = \{t_1, \ldots, t_l\}$ according to a probability distribution $P(t_i)$, where $P(t_i) > 0$ for every i and $P(t_1) + \cdots + P(t_l) = 1$.
 - 2. The Sender observes t_i and then chooses a message m_j from a set of feasible messages $M = \{m_1, \dots, m_J\}$.
 - 3. The Receiver observes m_j (but not t_i) and then chooses an action a_k from a set of feasible actions $A = \{a_1, \dots, a_K\}$.
 - 4. Payoffs are given by $U_S(t_i, m_j, a_k)$ and $U_R(t_i, m_j, a_k)$.
- Consider the following signaling game:

$$T = \{t_1, t_2\}, A = \{a_1, a_2\}, P(t_1) = p, \text{ and } M = \{m_1, m_2\}.$$

• The Sender has four pure strategies:

$$(m_1, m_1), (m_1, m_2), (m_2, m_1), \text{ and } (m_2, m_2).$$

- The strategy (m', m'') means the Sender of type t_1 chooses a message m' and type t_2 chooses a message m''.
- Similarly, the Receiver has four pure strategies:

$$(a_1, a_1), (a_1, a_2), (a_2, a_1), \text{ and } (a_2, a_2).$$

- The strategy (a', a'') means the Receiver plays a' if the Sender chooses m_1 and plays a'' if the Sender chooses m_2 .
- We call Sender's strategies (m_1, m_1) , (m_2, m_2) to be pooling (because each type sends the same message), and (m_1, m_2) , (m_2, m_1) to be separating (because each type sends a different message).

Signaling Requirements

After observing any message m_j from M, the Receiver must have a belief about which types could have sent m_j . Denote this belief by the probability distribution $\mu(t_i|m_j)$, where $\mu(t_i|m_j) \geq 0$ for each $t_i \in T$, and $\sum_{t_i \in T} \mu(t_i|m_j) = 1$.

- 序发理性

2) Receiver: (仅依赖银网以和belief).

For each $m_j \in M$, the Receiver's action $a^*(m_j)$ must maximize the Receiver's expected utility, given the belief $\mu(t_i|m_j)$ about which types could have sent m_j . That is, $a^*(m_j)$ solves

$$\max_{a_k \in A} \sum_{t_i \in T} \mu(t_i|m_j) U_R(t_i, m_j, a_k).$$

Sender: (依赖 Receiver 的东西)

For each $t_i \in T$, the Sender's message $m^*(t_i)$ must maximize the Sender's utility, given the Receiver's strategy $a^*(m_j)$. That is, $m^*(t_i)$ solves

$$\max_{m_i \in M} U_S(t_i, m_j, a^*(m_j)).$$

- These two requirements imply that both the Receiver and the Sender act in an optimal way.
- Given the Sender's optimal strategy $m^*(t_i)$, i.e., m^* is a function from T into M, let $T_j = \{t_i \in T : m^*(t_i) = m_j\}$. T_j is the set of all types sending the message m_j .
- The information set corresponding to m_j is on the equilibrium path if $T_i \neq \emptyset$, and off the equilibrium path otherwise.

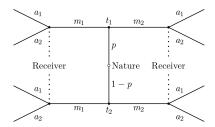


Figure 1: A signaling game

$$\mu(t_i|m_j) = \frac{P(t_i)}{\sum_{t \in T_i} P(t)}, \forall t_i \in T_j.$$

· Perfect Bayesian Equilibria

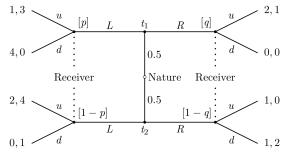
De

A pure-strategy **perfect Bayesian equilibrium** in a signaling game is a pair of strategies $m^*(t_i)$ and $a^*(m_i)$ and a belief $\mu(t_i|m_j)$ satisfying Signaling Requirements (1), (2R), (2S), and (3).

- A strategy for the Sender is a function from the type space T into the message space M; a strategy for the Receiver is a function from the message space M into the action space A.
- For a perfect Bayesian equilibrium of a signaling game, if the Sender's strategy is pooling (or separating), then we call the equilibrium pooling (or separating), respectively.

e.g.

 Find all pure-strategy perfect Bayesian equilibria in the following signaling game.



- The first (the second) number is the payoff to the Sender (the Receiver).
- In this game,

$$T = \{t_1, t_2\}, P(t_1) = 0.5, M = \{L, R\}, A = \{u, d\}.$$

- The Sender's strategies are: (L, L), (L, R), (R, L) and (R, R), where (m', m'') means that type t_1 chooses m' and type t_2 chooses m''.
- The Receiver's strategies are: (u, u), (u, d), (d, u), and (d, d), where (a', a'') means that the Receiver plays a' following L and a'' following R.
- We analyze the possibility of the four Sender's strategies to constitute perfect Bayesian equilibria.
- Case 1: Pooling on L
- \bullet Suppose the Sender adopts the strategy (L,L).
- By Signaling Requirement 3, we have p=1-p=0.5. Given this belief (or any belief) of the Receiver, the Receiver's best response to message L is u, i.e., $a^*(L)=u$.
- For the message R, the Receiver's belief q cannot be determined by Sender's strategy, and thus we can choose any belief q. Furthermore, both $a^*(R) = u$ and $a^*(R) = d$ are possible for some q. Indeed $a^*(R) = u$ iff $q \ge 2/3$; and $a^*(R) = d$ iff $q \le 2/3$.
- We only need to see if sending L is better than sending R for both types t_1 and t_2 .
- If $a^*(R) = u$, i.e., (u, u) is the Receiver's strategy, then for type t_1 , the Sender's payoff is 1 if L is sent and 2 if R is sent. Hence, sending L is not optimal.
- If $a^*(R) = d$, i.e., (u, d) is the Receiver's strategy, then for type t_1 , the Sender's payoff is 1 if L is sent and 0 if R is sent, choosing L is optimal; for type t_2 , choosing L is also optimal given 2 > 1.
 - Thus, (L, L) is the Sender's best response to the Receiver's strategy (u, d).
- Moreover, (u,d) is also the Receiver's best response to the Sender's strategy (L,L) if $q \leq 2/3$.
- Therefore, $[(L, L), (u, d); p = 0.5, q \le 2/3]$ is a pooling equilibrium.

至了Receiver 的 Choice 詹出的限制

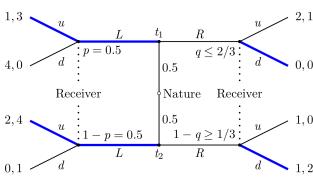


Figure 2: Pooling equilibrium: $[(L, L), (u, d); p = 0.5, q \le 2/3]$

• Case 2: Pooling on R

- Suppose the Sender adopts the strategy (R, R).
- Then Signaling Requirement 3 implies that q = 1 q = 0.5. Given this belief, the Receiver's best response to R is d, i.e., $a^*(R) = d$, since 0.5 < 1.
- For the message L, we can choose any belief p. But we know for any p, the Receiver's best response to L is u, i.e., $a^*(L) = u$.
- Given the Receiver's strategy (u, d), for type t_1 , the Sender's payoff is 0 if R is sent and 1 if L is sent, and thus R is not optimal.
- Therefore, there is no equilibrium in which the Sender plays (R, R).
- Case 3: Separation with t_1 playing L
- Suppose the Sender adopts the separating strategy (L, R).
- Then, Signaling Requirement 3 implies p=1 and q=0. For these beliefs, we must have $a^*(L)=u$, and $a^*(R)=d$.
- Given the Receiver's strategy (u, d), for type t_2 , the Sender's payoff is 2 if L is sent and 1 if R is sent. Hence R is not optimal.
- Therefore, there is no equilibrium in which the Sender plays (L, R).
- Case 4: Separation with t_1 playing R
- Suppose the Sender adopts the separating strategy (R, L).
- Then, Signaling Requirement 3 implies p=0 and q=1. For these beliefs, we have $a^*(L)=u$ and $a^*(R)=u$.
- Given the Receiver's strategy (u, u), for type t_1 , the Sender's payoff is 1 if L is sent and 2 if R is sent. Hence R is optimal.
- For the Sender type t_2 , the payoff is 2 if L is sent and 1 if R is sent. Hence L is also optimal.
- Therefore, [(R,L),(u,u);p=0,q=1] is a separating perfect Bayesian equilibrium.

How to find (pure-strategy) perfect Bayesian equilibria in signaling games:

- (1) Start with a strategy of the Sender (pooling or separating);
- (2) If possible, calculate the beliefs of the Receiver using Bayes' rules. Otherwise, choose arbitrary beliefs; (Requirement 3)
- (3) Given the beliefs, find out the best response of the Receiver; (Requirement 2)
- (4) Check whether the Sender's strategy is a best response to the Receiver's strategy.

· 注2

- Consider an alternative way to find perfect Bayesian equilibria.
- We first find Bayeisan Nash equilibria, and then check which equilibria are perfect Bayesian equilibria.
- Consider the following matrix to represent the game:

		Receiver			
		(u, u)	(u, d)	(d, u)	(d, d)
Sender	(L, L)	1, 2, 3.5	1, 2, 3.5	4, 0, 0.5	<u>4</u> , 0, 0.5
	(L,R)	1, 1, 1.5	1, 1, 2.5	4, 1, 0	4, 1, 1
	(R, L)	2, 2, 2.5	0, 2, 2	2, 0, 1	0, 0, 0.5
	(R,R)	2, 1, 0.5	$0, 1, \underline{1}$	$2, \underline{1}, 0.5$	0, 1, 1

- Two (pure-strategy) Bayesian Nash equilibria: ((L, L), (u, d)) and ((R, L), (u, u))
- To check whether they are perfect Bayesian equilibria, we only need to find beliefs, satisfying all four Signaling Requirements.
- For (L, L), Bayes' rule requires p = 0.5 and there is no requirement for q. Given the belief, $a^*(L) = u$, and $a^*(R) = d$ iff $q \le 2/3$. Thus (u, d) is a best response to (L, L) iff p = 0.5 and $q \le 2/3$.
- For (R, L), Bayes' rule requires p = 0 and q = 1. Given this belief, $a^*(L) = u$ and $a^*(R) = u$. Thus (u, u) is a best response to (R, L).
- Therefore, $[(L, L), (u, d); p = 0.5, q \le 2/3]$ and [(R, L), (u, u); p = 0, q = 1] are two perfect Bayesian equilibria.

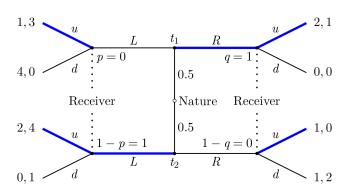
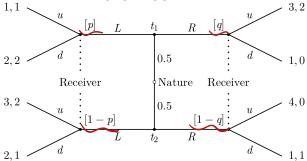


Figure 3: Separating equilibrium: [(R, L), (u, u); p = 0, q = 1]



• Besides pure-strategy perfect Bayesian equilibria (either separating or pooling), there may exist hybrid equilibria in which some type of the Sender randomizes.

• Consider a hybrid equilibrium in which type t_1 Sender randomizes between L and R, while type t_2 Sender chooses R.

• Let the hybrid strategy of the Sender being $(1 - r_1)L + r_1R$ for type t_1 , where $0 < r_1 < 1$, and R for type t_2 .

• Given the Sender's strategy, the Receiver's beliefs are p = 1 and $q = \frac{r_1}{1+r_1}$ by Bayes' rules.

 \bigcirc Then the Receiver's best response to message \underline{L} is d.

For message R, given the belief q, the Receiver's best response is

$$\beta_R(q) = \begin{cases} u, & \text{if } q > \frac{1}{3}; \\ \underbrace{r_2}u + (1-r_2)d, & \text{if } q = \frac{1}{3}; \rightarrow \text{usd REA.} \\ d, & \text{if } q < \frac{1}{3}. \end{cases}$$

• If the Receiver chooses u, then type t_1 Sender would choose R rather than $(1 - r_1)L + r_1R$.

• If the Receiver chooses d, then type t_1 Sender would choose L rather than $(1-r_1)L+r_1R$.

• The remaining possibility is for the Receiver to choose $r_2u + (1 - r_2)d$ for $0 < r_2 < 1$, which requires that $q = \frac{1}{3}$.

• This further implies that $r_1 = \frac{1}{2}$.

• Given that the Receiver chooses $r_2u + (1 - r_2)d$ when R is sent, where $0 < r_2 < 1$, type t_1 Sender will choose $\frac{1}{2}L + \frac{1}{2}R$ if

$$2 = 3r_2 + (1 - r_2)$$
. → ti 状态下 左 = 石 (期望)

Hence, we get $r_2 = \frac{1}{2}$.

• Given the Receiver's choice, type t_2 Sender gets an expected payoff of $\frac{5}{2}$ when choosing R, which is strictly higher than 2.

• Therefore, it is indeed optimal for type t_2 Sender to choose R.

• In sum, the following is a hybrid equilibrium: $[(\frac{1}{2}L+\frac{1}{2}R,R),(d,\frac{1}{2}u+\frac{1}{2}d);(p=1,q=\frac{1}{3})].$

(3解即可)

· Cheap - Talk Games

 Cheap-talk games are analogous to signaling games, but the Sender's messages are just talk, i.e., costless, non-binding, nonverifiable claims.

• Cheap talk cannot be informative in some cases (for example, Spence's job-market signaling model).

• There are situations where cheap talk can convey some information (although may not be fully precise), for example, Stein (1989), Matthews (1989), Austen-Smith (1990).

• In general, cheap talk can be informative under certain conditions.

 \bullet The timing of the simplest cheap-talk game is identical to the timing of the simplest signaling game (only payoff functions differ):

1. Nature draws a type t_i for the Sender from a set of feasible types $T = \{t_1, \ldots, t_I\}$ according to a probability distribution $P(t_i)$, where $P(t_i) > 0$ for every i and $P(t_1) + \cdots + P(t_I) = 1$.

2. The Sender observes t_i and then chooses a message m_j from a set of feasible messages $M = \{m_1, \ldots, m_J\}$.

3. The Receiver observes m_j (but not t_i) and then chooses an action a_k from a set of feasible actions $A=\{a_1,\ldots,a_K\}$.

4. Payoffs are given by $U_S(t_i, a_k)$ and $U_R(t_i, a_k)$.

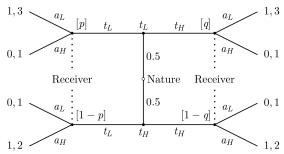
- The key feature of the cheap-talk game is that the message has no direct effect on the payoffs of the Sender and the Receiver.
- The message can only be informative by changing the Receiver's belief about the Sender's type.
- Since anything can be said (i.e., M can be a very large set), it is typically assumed that M=T.
- The definition of perfect Bayesian equilibrium in a cheap-talk game is identical to that in a signaling game.
- One key difference between these two games is that there always exists a pooling equilibrium in a cheap-talk game.
- The following is a pooling equilibrium:

$$m^*(t_i) = t^*, a^*(m_i) = a^*, \mu(t_i|m_i) = P(t_i)$$

for all $t_i \in T$ and $m_i \in M$, where t^* is any message, and a^* solves

$$\max_{a_k \in A} \sum_{t_i \in T} P(t_i) U_R(t_i, a_k).$$

- In this pooling equilibrium, the Sender of all types sends the same message t^* , while the Receiver keeps the prior belief of all messages and takes an action optimally according to the belief.
- An interesting question is whether there exists any non-pooling equilibrium in which communication can be effective.
- Find all pure-strategy perfect Bayesian equilibria of the following signaling game.



- Note that the above signaling game is indeed a cheap-talk game, since neither the Sender's payoff nor the Receiver's payoff depends on the messages.
- Clearly, there are two pooling equilibria:

$$[(t_L, t_L), (a_L, a_L); p = 0.5, q \ge 1/3],$$

and

$$[(t_H, t_H), (a_L, a_L); p \ge 1/3, q = 0.5].$$

• There also exist two separating equilibria:

$$[(t_L, t_H), (a_L, a_H); p = 1, q = 0],$$

and

$$[(t_H, t_L), (a_H, a_L); p = 0, q = 1].$$

• Consider a two-type, two-action example:

$$T = \{t_L, t_H\}, P(t_L) = p, A = \{a_L, a_H\}, M = T.$$

• We use the following matrix to represent the payoffs: the first (second) number is the payoff to the Sender (Receiver).

$$\begin{array}{c|cc} & t_L & t_H \\ a_L & x, 1 & y, 0 \\ a_H & z, 0 & w, 1 \end{array}$$

- Note that the above matrix differs from the normal-form representation of the game.
- Consider the following separating equilibrium:
 - the Sender's strategy: $[m^*(t_L) = t_L, m^*(t_H) = t_H];$
 - the Receiver's beliefs: $\mu(t_L|t_L) = 1$ and $\mu(t_L|t_H) = 0$;
 - the Receiver's strategy: $[a^*(t_L) = a_L, a^*(t_H) = a_H]$.
- \bullet In the above equilibrium, each type of the Sender tells the truth.
- It can be shown that the separating equilibrium exists iff $x \geq z$ and $y \leq w$.
- In other words, the Sender's and the Receiver's interests perfectly align.
- In general, Crawford and Sobel (1982) have shown that more communication can occur through cheap talk when players' preferences are more closely aligned.