C)\&p‘\‘@r‘ \. Stokte Games Of' OO\M\:\@U& Lfoemation .

L€C | ln‘\'FOO(MdS‘M
— dek with Stuefic setfings with many Maividuals

’ Methodnlﬂw of Gare Theory
° I the standard form of rationality means that a
‘ Kela RSSMMFW'\ . M =2 decision maker chooses an action that yields maximum (expected)

utility among all possible actions, given the decision maker’s
information.

° In player is rational if the player chooses an action
that maximizes his expected payoff, given the player’s beliefs
about opponents’ strategy choices.

* We ‘fofMS o how ?laﬂ&rﬁ Shoulod behave in & Corttin SaSe rather than how hey do behave .

1, AWs Course, we -foms on WQML tkwraa -}rame,werk.
l’7‘(:\1@7(: GIA P\waors’ adhion as W&.

Differeds types of games L determined by o player hedelf >
e S v %HMO Static: one-shot, simultaneous-move

. COIMPW D s: mation VS \\anle Wmmm Complete information: each playernction is common
knowledge among all players.
13\133("—4?‘

Mabuod  knowledae - MW‘UE\SMNA%MPWQS.

R
* Common knowledge : alh p\aﬂers knaw E, GMF\maors know Yhat they ald know B v+

EPwe AN E LB

e Four types of games e Four corresponding solution concepts
©Q Static games of complete information @ Nash equilibrium
© Dynamic games of complete information © Subgame-perfect Nash equilibrium
© Static games of incomplete information © Bayesian Nash equilibrium
@ Dynamic games of incomplete information @ Perfect Bayesian equilibrium

Lee 2. Normak — ‘form Games '
r;~ew\ Pmer's poyoff function s commen knoudedlge

N among  giA ecs.
€4, Prismers' Dilemma — SHtic fones of complete. Mformation bl
L ong shit , Simultonesus move -
« Normok - Form represeitaion :

that could be chosen by the players.

@ In general, when there are only two players and each player has a

P_e'F The,normal-form (also called strategic-form) representation of an finite number of strategies, then the payoff functions can be
—2" p-player game specifies the players’ strategy spacesSi,..., S, and represented in a bi-matrix.
their payoff functions @, ..., u,. We denote this game by . . .
e The bi-matrix need not be symmetric, e.g.,
G=A{S1,-...Sp;u1,...,un}. Player 2
L R
Let((sy,. .., 8,) be a combination of strategies, one for each player. Ul w(U,L), (UL | w(U,R), wUR)
Then w;(s1, . .., sp) is the payoff to player 7 if for each j=1,...,n, Player 1 M | w (M, L), upg(M, L) | w1 (M, R), up(M, R)
player j choosesrtrategy sj. D | w(D, L), w(D,L) | wi(D,R), us(D,R)

the payoff of a player depends not only on s own action , but olse gn the actions of others.
=> Tnterdependence (Q-hwtre?ic Wnteraction).



e For Example 1, the normal-form representation is @ The payoffs of two players in Example 1 can be represented in the
G = {51, 5;u1, w2} y& S P14 following
o Sy =8 = {D, C}, where D means ‘Defect”, and ¢’ means {Confess”
o uy(D,D)=—1,u(D,C)=-9,u1(C,D) =0,u(C, C) =—6
o uy(D, D) = —1,u3(D, C) =0,uz(C, D) = =9, u3(C, C) = —6

Prisoner 2
Defect  Confess
. Defect | —1,—1 -9,0
Prisoner 1

TIPS. %7&%5'(?7{“%/\, 'ﬂ'l%l A \‘E-\ﬂv %g{»\%_ ?\"‘j@ré Confess | 0,—9 | —6,—6

o Prisoner 1 is also called the\row player, and Prisoner 2 the golumn_
LR LT . Pouyer #H¥o Marix poser (FEF D
;2.5 A o Each entry of the bi-matrix has two numbers: the first number is
¥ >34 W ARKETE £4-.

the payoff of the row player and the second is that of the column
player.

« Concept of Statesies
Best respose

¢ Tmportart Concepts = | (Striotly) dhominatreol - stractieqy
(Strictly) daminant, Shrateqy

« Ngtations: 8 = (S1y-++58im1, 8is Sitls- -5 Sn)
S—i = (511-“~52‘—1751'+17~--73n)
S = Slx...SZ-,1><SZ-><Si+1><...Sn

S = S1x...85.1 XSi+1 X ... 8
In a normal-form game G = {Si,...,Sp; u1,..., Upn}, the\l}eét,
. g . € se for player i to a combination of other players’ strategies

s_; € S_;, denoted by R;i(s—;), is referred to as the set of maximizers of -I‘]-PS‘ H—B\;fa‘i") :;
{mwa&%.

or an infinite set. We call R; the@t-\r%se/
We for player i.

In a normal-form game G = {S1,..., Sp; u1, ..., un}, let &, s € S;.

i

. g Strategy s is@W by strategy s} (or strategy s <f8 : ?%ﬁﬁ\‘%ﬁ Z\a E%WQ%?WS'\ A5,
" strictly dominates strategy o), if for each feasible combination of the é?:\'. " )
TSR 3S B0 % B P4-S)

other players’ strategies, player 7's payoff from playing ¢} is strictly less
than player ¢’s payoff from playing s/, i.e
wi( 8y 5—i) < ui(s},s—), Vs_;€8_;

We say ¢, is a strictly dominated strategy of player .
= Q fatenad player Wl never choose G strictly doringbed Strategy. .

* _Dg * In a normal-form game G = {8, ..., Sp;u1, ..., u,}, strategy 3; € S; is
astrictly dominant strategy of player ¢, if it strictly dominate
other strategies. Equivalently, if for each feasible combination of the
other players’ strategies, player #’s payoff from playing §; is strictly
larger than player ¢’s payoff from playing any other strategies, i.e.,

Uz(gl 872‘) > Ul(gl, 871‘), Vs_; € Sfi, ng € Si, 31 75 S

= (& raienak ployer wilk alus Chose & strictly daminanl Stroegt -
A staerly dominai0 strategy s unique f T exists .

o Result 1: A strictly dominated strategy can never be a best
response, i.e., if §; is a strictly dominated strategy of player 4, then
8 & Ri(s—;) forall s_; € S_;.

o Result 2: A strictly dominant strategy is always a best response,
i.e., if §; is a strictly dominant strategy of player 7, then
5 € Ri(s_i) for all s_; € S_;.

1L PR .
. 1ESOS ( Itrrated Elwination ok Strictly Dominsted Strteqies).

e ﬂr Player 2 o Step 2: Player 2
‘T L M R o Now player 1 has a strictly dominated strategy, which is strategy D. L M
Player 1 U o If player 2 also knows that i) player 1 knows that player 2 is Player 1 U
) D rational, and ii) player 1 is rational, then he can also eliminate D.

o The game is further reduced to
o Step 1:
o Player 1 does not have a strictly dominated strategy.
o For Player 2, R is a strictly dominated strategy, which is strictly

dominated by M. Hence player 2 will never choose R if he is @ Step 3: Player 2

o Again L is eliminated if player 1 knows that i) player 2 knows that

. M
rational.
o If player 1 knows that player 2 is rational, then he can eliminate R player 1 knows that player 2 is rational, i) player 2 knows that Player 1 U
from player 2’s strategy space by playing the following game: player 1 is rational, iii) player 2 is rational.
Player 2 o (U, M) is the final outcome!

L M

U
Player 1
ayer 1 o




. hS - 2
2 main growbac > Netice: — RRFRIREAGIERE.
key assumption: rationality of all players is common ég“% ﬁmﬁ)—/\%ﬁ%ﬂv" 9 Common Wl@dﬂe % ﬁgw{&ﬁ .

knowledge.

o The prediction of IESDS may not be very precise, and sometimes it PS %J\) E'* Z\%&ﬁ/ﬁﬁ& .

predicts nothing about games.
k’ e a IESDS can do nothing with the following game:

R AT NEdfeR e R iRiRE:

—

TRA9 1T R4 . e 4. BB BT} qome &. NEL 382 154k
43 (4. e

In the n-player normal-form game G = {S1,...,Sp; u1, ..., U}, the
g. strategies (s},...,s;) are a Nash equilibrium if,

$fa: Fakia i Bk RARITIC
RIRiR| L RBLTE

S;-( € Ri(S*,i), Vi=1,...,n.

A

Equivalently, (: Eﬁ‘&ﬁ-&& .

w5}, 5%) = max (s 87, V=1, R v 1ESPS BY

Then s is the equilibrium strategy of player . ,ﬁ’v E-: Nt %% ltSDS { z\:&qﬁ rottanam-a% Common

o Each player’s strategy must be a best response, given other players’ hm,,kdﬂg
equilibrium strategies. ﬁ% kﬁs@m .

o No single player wants todeviate unilaterally — strategically stable
or self-enforcing

. Hﬂl\) ’h -ﬁ'\d & ME (7 Player 2

e L C R
. . . , q U[0.4740]53
e For a bi-matrix game, underline the payoff to each player’s best Player 1 3 | 4.0 0453
response for any given other players’ strategies. D[3.5]3.5]6.6
e If you find all payoffs in a single entry are underlined, then this is a There exists a unique NEy (D, R).
Nash equilibrium. N (6,6)

K. Ties. RbeRoAGeR wEe. LESA LRS!
- The relationslip botween NE R Tesos.

In an n-player normal-form game G = {5, ..., Sp; u1,. .., uy}, if the R _ -
@ strategies (sj,...,s}) are a Nash equilibrium, then they survive L {NC%{EQE < fltsDS ﬁa{-& %}

iterated elimination of strictly dominated strategies.

Prod: Bwoc. Supme ST is the fist of the straveges (St~ SM) 1o be elimingted for being strictly davinated.
& IST thab has ot yat been elminatied From Si thas stridhly dominabes S
Ve WilST S CWiS! ) For all S5 +that have nob been ebwminited From other plagers’ sty Spaces.
R ST TS the ¥ eqyilibrium strbegy 1o be elminated, we have WST,ST) <SS .
This contracicts 0 NE. 4]

Consider an n-player normal-form game G = {S1,..., Sp; U1, ..., Un},
@- which is finite. If iterated elimination of strictly dominated strategies < 75
vR - & > NE -7g.
eliminates all but the strategies (s},..., s}), then these strategies are B2 lESDS R —B /ﬁ m.qi ﬁg
the unique Nash equilibrium of the game.

e Proof: By Proposition 1, Nash equilibrium strategies can never be @ So we have
eliminated in IESDS. Since (s, ..., s5) are the only strategies wi(biy s—i) < wi(ts, s—;)
which are not eliminated, s} is thus the only possible equilibrium
strategy for player 7. Hence, we cannot find two different Nash
equilibria.

o Tt remains to show that (s],...,s}) are indeed a Nash equilibrium. © Since §*; have not been eliminated, we have

e We use proof by contradiction. Suppose s} is not a best response
of player i to s* .

o Let the relevant best response be b; (which must exist since the which contradicts the fact that b; is a best response to s* . @
game is finite), i.e.,

for all strategies (s_;) that have not been eliminated from other
players’ strategy spaces.

ui(bi, 875) < ui(ti, 855),

max u;(s;, 8* ;) = wi(bs, s7;)
5i€S;

> ui(s;, 575).

But b; must be strictly dominated by some strategy t¢; at some
stage of the process of iterated elimination.



+ Courndt ModeA of Duopely

@ Suppose two firms (1 and 2) produce a’ homogeneous good, and
¢ Selb up  compete i

o Let ¢; be the quantity produced by firm 4, where =1, 2.

o The aggregate quantity of the good is denoted by @ = ¢1 + ¢.

o The inverse demand of the good is

a—Q, if Q< a,

HQ) = {0, if Q> a.

The cost function of firm 7 is' Ci(¢;) = cg;, where 0 < ¢ < a.

Question: How much should each firm produce?

« B\d the moded

o We first need to translate the problem into a normal-form game.

@ Players: the two firms
@ Strategies: S; = [0,00) for i = 1,2 (any g¢; is a strategy of firm )
@ Payoffs:
gla—(gi+q)—¢d, fatg<a
T4 ) = .
—cg;, ifg+g>a
o The pair of quantities (¢f, ¢5) is a Nash equilibrium if for each firm
i that ¢} solves
.. (s G5)-
o Equivalently,

where i,j=1,2 and i # j.
¢ gO\VC T‘\"

o To solve for the Nash equilibrium, we first need to find the best
response correspondence of each player.

o Consider the following two cases:

o Case 1: When ¢; > a — ¢, player 7’s payoff is

<0, ifg¢g>0,
(> 4) —0, ifg=0
- ? (2 ?

which is clearly maximized at ¢; = 0. Thus, the best response of
firm 7is Ri(g;) = 0.
o Case 2: When 0 < ¢; < a — ¢, player 7's payoff is

<0, if ¢;>a—c—g,
71'1'((]1', qj) . )
=gla—(g+¢)—d, fe<a—c—g

The optimal ¢; is determined by the following first-order condition
a— g —c—2¢=0.

o Thus, the best response is Ri(g;) = 3(a— gj— ¢).
e In sum, the best response correspondence (or function) of player ¢
is
La—q— if0<¢g<a-—
Ri(g) =42 7 : ’
0, if g >a—c
o Alternatively, we can solve for the Nash equilibrium graphically,

S e U
o The Nash equilibrium (g, ¢;) is the intersection of two best ie., (¢}, ¢) can be determined by the intersection of the two best

response correspondences, which imply that
response Curves.

gi = Ri(g3) and g5 = Ra(q}). *
o We can obtain (¢j, ¢;) by simultaneously solving
1
Q= 5(0‘7(1376)’

1 *
@ = 5(0— ¢ — o).

o The unique Nash equilibrium is (¢}, ¢3) = (% %)

%2 RICSS (2.3).



+ Bertrand  Moded of Duopaly

@ Suppose two firms produce differentiated products and compete in
. Setr up
o The demand for firm 7 is
ai(pi; pj) = a— pi + bp;,

where b > 0, which suggests that the two products are substitutes.
o Firms’ marginal cost is again assumed to be ¢, where 0 < ¢ < a.

@ Question: What is the Nash equilibrium?

« B\ the moded

o The strategy space of firm 7 is S; = [0,00) and any p; € S; is a
strategy.
o The profit of firm ¢ is

mi(pi, pj) = (@ — pi + bpj)(pi — ¢).
o The pair of prices (p, p;‘) is a Nash equilibrium if p} solves

Og?g{oo(a — pi+ bp;)(pi — o),

which leads to
>k 1 >k
p; = —2(a+ bp]- + ¢).

@ The Nash equilibrium is determined by

. So\\le .

1
o= latom+o),
5 1 5
Py = 5(‘”‘ bpi + ¢).
o The unique Nash equilibrium is (p3, p3) = (% %)

@ The problem only makes sense if b < 2.

*+ The Problem of the Commons

e Supposé n farmers graze their goats on the village green.
. SO UP- o The number of goats that the it farmer owns is &and the total
number of goats in the village is denoted by(G' = g1 + - - - gn.
@ The cost of buying and caring for a goat is e
o The value to a farmer is(u(G) per goat.
o Maximum number of goats that can be grazed is G40, Where
(@) > 0 for G < Gag-and v(G) =0 for G > G-
o For G < Gl ¥(G) <0 and v'(G) < 0.
o Assume that goats are continuously divisible and farmers
simultaneously choose how many goats to graze.

e Question: What should farmers do? Are their choices socially
optimal?

- Buildh +he modeh. « What's the VN'O\@M?

o The normal-form representation of the game: o The social optimum (denoted by G*) solves

© Players: n farmers
@ Strategies: S; = [0, Graz) (g is a strategy of farmer 7)
@ Payoffs:

max Gu(G) — Ge,
0<G<oo

ui(g) = giv(gi + g—i) — cgis which is given by

where g = (g1,--+,gn) and g_; = G— g, WG + G (G) — e = 0

o If (gi,---,g;) are a Nash equilibrium, then g must solve
o Comparing G** with G*, we have G* > G**:
o(g;i + ¢) + g5V (g + g-) — ¢ =0. o Too many goats are grazed in the Nash equilibrium, compared to
the social optimum.
e Summing up all n first-order conditions yields o The common resource is overutilized because each farmer considers

his or her own incentives, but not other farmers’

o(G) + %G*U’(G*) p—

for G* =g + -+ gp.



Lee &. Mixed| Statieqies

In a normal-form game G = {Si,...,S;u, ..., un}, suppose

%' Si = {si1, ..., sik,}. Each strategy sy € S; is a,pure strategy for
player <. A mixed strategy for player i is a mmion
pi = (pir,- .., pik;), for k=1,..., K;, where p;y +---+ pix, = 1 and
pik > 0.

o In the Matching Pennies example, S; = {Heads, Tails}. - lzllayerTQ .
e Fach player has two pure strategies: Heads or Tails. Heads 7ela ls 1 aii

Player 1

o A mixed strategy for a player is a probability distribution
(p,1 — p), where p is the probability that the player chooses Heads,
while 1 — p is the probability that the player chooses Tails.

e (1/2,1/2) means playing Heads and Tails with an equal
probability; (1/3,2/3) means playing Heads with a probability of
1/3 and Tails with a probability of 2/3.

o The mixed strategy (1,0) is simply a pure strategy of playing
Heads.

Tails | 1,-1 | —1,1

o How to extend the definition of Nash equilibrium to include mixed
strategies?
o Consider the case with two players.
@ Suppose
S1 = {s11, 812, - -, 817},
and
Sy = {21, 822, - -, 2K}

o Each s1; € 1 is a pure strategy for player 1, and each sy, € S is a
pure strategy for player 2.

o If player 1 thinks that player 2 will play a mixed strategy
p2 = (pa21,. .., p2k), then player 1’s expected payoff of playing a
pure strategy si; is

K
v (s15,p2) = Z pak (51, S2k)-
=1

e Player 1’s expected payoff of playing a mixed strategy
p = (p11,---,p1J) is

J K

Z D1 Z poru1 (s, S21)
=1 k=1

=1

J K
= EZPUP%Ul(ﬁﬁ So)-

j=1 k=1

o A mixed strategy p1 = (p11,-- ., p1J) is a_best response to po if

v1(p1,p2) = vi(ph, p2),

v1(p1, p2)

for all p} over Si.

e Similarly, if player 2 thinks player 1 will play a mixed strategy
m = (p11,- - ., p1J), then player 2’s expected payoff of playing a
mixed strategy ps = (po1, ..., P2k) 18

K J
Z P2k Z P1_7u2(51]‘7 Sok)
K=1 j=1

J K

DO pupakua(sij, sok)-

j=1 k=1

v2 (Pl ) Pz)

¢ Mixed - Steatieqy Nosh Egualibrivm
In a two-player normal-form game G = { S, S2; w1, up}, the mixed . . . - -
g, strategies (pj, p3) are a Nash equilibrium if each player’s mixed Q'D.?S %ﬁi aq&%% \;) Efa% {L%WL' @% t&/g %@WEW N E .
strategy is a best response to the other player’s mixed strategy:
v1(pi, p3) > vi(p1, p3) for every py over S,

and
(7, p3) > v (p}, po) for every py over Ss.



¢ How to 'f\no\ mixeo\—straxseg‘g NE?

o We consider the case with two players, each having two pure
strategies.

Let p1 = (1,1 — 7) be a mixed strategy for player 1 and
p2 = (gq,1 — g) be a mixed strategy for player 2.

Player 1’s expected payoff of playing p;, given player 2’s strategy
P2, is

vi(p1, p2) = roi(sin, p2) + (1 — nvi(siz, p2).

For each pa (or ¢), we need to compute r, denoted by 7*(g), such
that p; is a best response to pa.

r*(q) is the set of solutions to

max v (p1, p2),

where
1, if v1(s11, p2) > v1(s12, P2);
m™(g) = q[0,1], if v1(s11,p2) = v1(s512, P2);
0, if 2}1(511,])2) < U1 (812,])2).

o Similarly, player 2’s expected payoft is
va(p1, p2) = qua(pr, $21) + (1 — @Q)va(p1, s22)-

o Given pi, the best response for player 2 is denoted by ¢*(r), which
is the set of solutions to

max v(p1, p2),

where
1, if va(p1, s21) > va(p1, 822);
q(r)=14100,1], if va(p1, s21) = va(p1, $22);
0, if 1}2(p1./821) < 1)2(p1,822).

o A mixed strategy Nash equilibrium is an intersection of the two
best-response correspondences 7*(g) and ¢*(r).

o If (%, ¢*) is a mixed strategy Nash equilibrium, then

o= (),
¢ = q0).

e.a.

e Find a Nash equilibrium in the game of Matching Pennies.

Player 2
Heads¥ Tails\’%
Heads"| —1,1 | 1,-1
Player 1 1L
WL T, -1 | —11

o Let p1 = (r,1 — r) be a mixed strategy for player 1, W
probability player 1 chooses Heads.

o Similarly, let po = (¢, 1 — ¢) be a mixed strategy for player 2,

where_g is the probability player 2 chooses Heads.

o What is *(¢) and ¢*(r)?
e For player 1,

¢ (-1)+(1—-¢g-1=1-2q
¢-1+(1—-¢q - (-1)=-1+2¢

1 (5117 PZ)
vi(s12,p2) =

e Player 1 chooses Heads (i.e., 7*(¢) = 1) if and only if

1-2¢>-142¢=0<g<1/2.

o We have
1, if0<g<1/2;
X . . . .
™(g)=1410,1], ifqg=1/2;
0, if1/2 < ¢<1.
.
,
Heads 1 Heads 1
177 P
e
Tails T ) Tails Y
Tails Heads Tails Heads
Figure 1: Best response correspondence for player 1: *(q) Figure 2: Best response correspondence for player 2: ¢ (r)

Toes. ZEF v quoord

e For player 2,

r-14+(1—17)-(-1)=—-1+2r
r(-1)+(1-r)-1=1-2r

U2 (ph 521)

v(p1, s22) =
e Player 2 chooses Heads (i.e., ¢*(r) = 1) if and only if

—1+4+2r>1-2re1/2<r<1.

o We have
1, if1/2<r<1;
q*(r) = [Oa ”7 if r= 1/2
0, ifo<r<1/2
»o (4 L
i d"." +he only NE Wn mixed| Stroibegies.
v y =32
HAO)]

Tails

Figure 3: Mixed-strategy Nash equilibrium in Matching Pennies



The pure strategies played with a positive probability in a N DS
@ mixed-strategy Nash equilibrium survive IESDS. e NE%Q% 1eses.

A% 37T B ek Pk AK RARH-T FINE . T wA L TESDS T35 - % Rk

o In general, let p = (p1,...,pn) be a mixed strategy profile, where

aém(\@rak cose - pi=(pi,...,pix,), for i=1,...,n

o The expected payoff for player i is

K
vi(p) =Y pigvip1 -5 Pit, S5, Pi1s - P)-
=

o The mixed strategy p; is a best response to
P—i = (PLy-» Pi-1,Pit1s -+, Pn) if
vi(p7, i) 2 vipi, p—i)

for all probability distribution p; over S;.

In a normal-form game G = {Si,..., Sp;u1, ..., Un}, the mixed
% . strategies (p},...,p}) are a (mixed-strategy) Nash equilibrium if
each player’s mixed strategy is a best response to the other players’
mixed strategies in terms of expected payoff, i.e.,
v}, p2y) > vilpis )

for every p; over S;, and for all i=1,...,n.

-Txistence £ NE.

In the n-player normal-form game G = {S1,..., Sp;u1, ..., up}, if nis -
_I_hm- finite and S; is finite for every i, then there exists at least one Nash PS EQNJ%ZLW %1‘7 Z\’\K"&%{%~

equilibrium, possibly involving mixed strategies.

. S‘h‘\dﬁ\a— Daminaled) S‘\Tcd\'ecaa, oA Best Respmse.

o Before we know that if a (pure) strategy is a strictly dominated
strategy, then it can never be a best response.

@ But the reverse may not be true.

Once we have considered mixed strategies, then the reverse can
also be true. = =

\M

e For instance, in a two-player game, a pure strategy is a strictly
dominated strategy if and only if it is never a best response.

o A ¢ strategy can be strictly dominated by a mixed strategy,
even it 1t_is not _strictly dominated By any e strategy’
o Example:
Player 2
L R
Ul3,-10,—
Player 1 M| 0,— | 3,—
D[1,—|1—

e D is not strictly dominated by either U or M.
e But D is strictly dominated by a strategy (1/2,1/2,0), i.e., playing
U and M with a half probability.

o D is a strictly dominated strategy — D is never a best response.

A pure strateg be a best onse_to a mixed strategy, even if
1T is not a_best response_to any pure strategy!

Player 2

L R

Ul3,-10,—

Player 1 M| 0,— | 3,—
D2 -2 —

o D is not a best response to L or R.
o D is a best response to a mixed strategy (¢,1 — ¢) chosen by player
2, if
2>3qand 2 > 3(1 — q),
ie,1/3<¢<2/3.
o D is not a “never best response” — D is not a strictly dominated
strategy!



Chopter 2 Dﬂhamic Giames

lec 5.

4 Dﬁr\am‘lc Giames of Complete Lwtim
- Lead in example

°

Consider a two-move game between two players. First, player 1
decides whether to give $1000 to player 2. Second, after observing
the choice of player 1, player 2 chooses whether to explode a
grenade that will kill both of them. Player 2 can threaten player 1
by saying “Give the money to me, otherwise I will explode the
grenade to kill you!”

Question: What should player 1 do in the first place? Is player 2’s
threat credible to player 1?7 What is the outcome of this simple
game?

On a winter evening, a farmer found a snake frozen with cold. The
farmer wanted to save the snake, which would make himself happy.
But he was worried if the snake would bite him after it was saved.
Believing that the snake would be grateful, the farmer saved it.
However, when the snake was recovered, it bit and killed the
farmer immediately.

Question: Why shouldn’t the farmer save the snake?

* Tatroduction

[

These are examples of dynamic games.
The central issue of dynamic games is credibility.
Dynamic: sequential choice, @repcated play

Complete information: each player’s payoff function is common

knowledge among all players.

Two types of dynamic games of complete information:

@ Dynamic games of complete and perfect information

@ Dynamic games of complete and imperfect information
In static games of complete information, we use normal-form
representation to describe a game.

Now we use extensive-form representation for dynamic games.

In particular, we will draw@t{e/gge\sf.

The above game is an example of dynamic games of complete and
perfect information.

This type of games takes the followin

e Player 1 chooses an action a; from the feasible set Aj;

e Player 2 observes a1 and then chooses an action ay from the feasible
set Aa;

o Payoffs are v (ay, a2) and ws(ay, az).

Note that

o A, may depend on the action ay, i.e., As(ay).

o Some action a; may even end the game, so that As(ap) is an empty
set (i.e., no choice of player 2).

In Example 1:

Ay = {L, R}, where L = “give $1000” and R = *“‘don’t give”;
Ag(L) = A2(R) = {L', R'}, where L' = “explode” and

R' = “don’t explode”.

-10,—-10  -1,1  —10,-10 0,0

Figure 2: A game tree for Example 1

A\

o Consider a two-player and two-stage game.
o Player 1 chooses an action L or R.
o Player 2 observes player 1’s action and then chooses an action L/

or R'.

Each path (a combination of two actions) in the following tree is
followed by two payoffs: the first for player 1 and the second for
player 2.

a, A b, B c, C d,D

Figure 1: Extensive-form representation using a game tree

In Example 2:
A; = {L, R}, where L = “save” and R = ‘‘don’t save”;
As(L) ={L, R}, where L' = “bite” and R’ = “don’t bite”;

-10,1 1,0

Figure 3: A game tree for Example 2



° Som of dynamic games of complete and perfect

@ The moves occur in sequence;

@ All previous moves are observed before the next move is chosen;

@ The players’ payoffs from each combination of moves are common
knowledge.

e How to solve this type of games?

o We use_backwards induction.
NN

o In the second stage, player 2 observes the action (say a;) chosen by
player 1 in the first stage, and then chooses an action by solving

max ug(ay, az).
ag€Ag

o Assume this optimization problem has a unique solution, denoted
by Ra(a1). This is player 2’s best response to player 1’s action a;.

e For example, Ry(L) = R and Ry(R) = L'.

o In the first stage, knowing player 2’s best response, player 1’s
problem becomes

max u (a1, Ra(a1)).
a1€A;

o Assume it also has a unique solution, denoted by aj.
o For example, af = R and Ro(a}) = L. )3
We call (a}, Ro(a})) the backwards-induction outcome of the

game.

o In Example 1:

° RQ(L) = HQ(H) = R,;

o af = Rand Rs(a}) = R;

o The backwards-induction outcome is (R, R').
o In Example 2:

o Ro(L)=1);

° 0 =R

o The backwards-induction outcome is R.

Motice - Backwards- indugtion owtcome ¢ NE
BRLE.

o Consider the following game:

L

Stacke|berq Model of Duspoly

o Consider a dominant firm moving first and a follower moving
second.
o The game is played as follows:

e Firm 1 chooses a quantity ¢; > 0.
o Firm 2 observes ¢; and then chooses a quantity ¢ > 0.
o The payoff of firm i is the profit

7i(q1, 2) = G[P(Q) — d],
where @ = ¢ + ¢ and

_Ja—-Q, fQ<g
P<Q)_{0, if Q> a.

e How to find the backwards-induction outcome?

o First, find the best response function Ry(gy) for firm 2, i.e., for any
given ¢, find ¢ that solves

gzlaz)éfrz(ql, %),

where
(g0, ) = plo-—qag—-—q@e-0o, fa+te<g
1, Q) = .
—cqe, ifq+aq>a
o Then we have

a—c—q ; o

Ro(qn) = 5, ifag<a-g

0, ifgr>a—c

@ Ry(q1) is the same as that in the Cournot model.

o Second, firm 1 knows Ra(¢1) and solves

R )
g}g}gm(m 2(q1))s

where

aloa—q-4=<—(, fa<a—qg
(]1((1—(]1—(3),

—Ccq,

m1(q, Ra(q1)) = ifa—c< q <a

if g1 > a.

3,2 1,1
o Ry(L) = I’ and Ry(R) = R'.

e The backwards-induction outcome is (L, L').

4,2

@ Suppose both players choose actions simultaneously, then they
play the following game:

Player 2

1 R
L|32]|1,1

Pl 1 : :
WL Rla2 2.3

o The Nash equilibrium is (R, R'), which differs from the
backwards-induction outcome (L, L').

@ The backwards-induction outcome in a dynamic game could be
different from the Nash equilibrium of the corresponding game
played simultaneously.




o Clearly, for ¢1 > a — ¢, firm 1’s profit is always negative. e Comparison between Cournot model and Stackelberg model:
@ Thus we only need to solve

Table 1: Cournot Model vs. Stackelberg Model

@1>0 2

a—q —c¢
maxq |a—q — ————— —
Q>

— me l(,,)
=max | cqla—q -,

Variable Cournot Model Stackelberg Model
which leads to the following first-order condition

q a—c a—c
2
a—c—2q =0. 3
i e s
o The optimal choice of firm 1 is nt (a—c)? (a—c)?
9 3
a—c e e
G = 5 5 (a=9)® 96) (altiC)
)2 < )2
e The quantity chosen by firm 2 is II* 2(“9 °) J(HIGL)
¢ = Rofa}) = “ 5 P o 55 o+ ¢
4

o The market price is

a—c
PP=a—qg—¢=c+ i

o Firms’ profits and the total profit are

* (a’_ C)2 * (a’_ C)2

3(a— c)?
M= M= -

, dl—[*: * *
an T + Ty 16

* Dynawic Games 0§ Lmperfect Lformation

o Consider the following simple two-stage game:
e Players 1 and 2 simultaneously choose actions a; and ay from the
feasible sets A1 and As, respectively.
o Players 3 and 4 observe the outcome of the first stage (a1, a2) and
then simultaneously choose actions a3 and a4 from the feasible sets
As and Ay, respectively.
o Payoffs are u;(ay, ag, as, as) for i =1,2,3,4.
o This game differs from the two-stage game with perfect
information, since there are simultaneous moves within each stage.

e For each given (a1, az), players 3 and 4 try to fin
equilibrium in stage 2.

@ Assume the second-stage game has a unique Nash equilibrium

'MMWQ% NE . BB Complele informaion 0 R%
(RERET) o Game #9)

(a3(a1, a2), aj(a1, az)).

e Then, player 1 and player 2 play a simultaneous-move game with
payoffs
ui( a1, az, a3(ay, az), dj(a1, az)), for i=1,2.
e Suppose (a7, a3) is the unique Nash equilibrium of this
simultaneous-move game.
@ Then

(a1, a5, a3(a1, a3), aj(ay, a5))

is the\su/b%toutcomeof the two-stage game.
© eq. Bk Rws 4AH3IRY

e Two investors have each deposited $5 millions with a bank. The o Players’ payoffs in date 1:

bank has invested these deposits in a long-term project. Withdraw Don’t

o If the bank is forced to liquidate its investment before the project Withdraw 4,4 5,3
matures, a total of $8 millions can be recovered. Don’t 3,5 next stage
o If the bank allows the investment to reach maturity, the project o Players’ payoffs in date 2:
will pay out a total of $16 millions. Withdraw Don’t
o There are two dates at which the investors can make withdrawals Withdraw 8,8 11,5
at the bank: Date 1 is before the bank’s investment matures and Don’t 5,11 8,8

Date 2 is after.
@ Suppose there is no discounting.
We work backwards.

o At date 2, in the unique Nash equilibrium, both withdraw and
each obtains $8 millions.

At date 1, they play the following game:
Withdraw Don’t
Withdraw 4,4 5,3
Don’t 3,5 8,8
o There are 2 pure-strategy Nash equilibria of this game:

@ Both withdraw and each obtains $4 millions;
© Both don’t and each obtains $8 millions.




o There are 2 subgame-perfect outcomes of the original two-stage
game:
@ Both withdraw at date 1 to obtain $4 millions each — the case of
bank run
© Both don’t withdraw at date 1 but do at date 2, and each obtains
$8 millions.
o Although there are two possible subgame-perfect outcomes, only
the second one is efficient.

o This model does not predict when bank runs will occur, but does
show that they can occur as an equilibrium outcome.

Lec b. Extersive - Form \Ze?resad'atim a-f Glames andk Suloamc - Pufet NE.

» Normak - Form  Representution of  Grames

The normal-form representation of a game specifies
Def. ()

strategies that could be chosen by the players.

— S’fra'tetates VS. woves .

+ Extensive - Form Regresentation of Giames

The extensive-form representation of a game specifies:
g (1) the players in the game;

\(%@each player has the move;

@k& what each player kmat each of his or her opportunities to

move;
(2¢) what each playerlknowslat each of his or her opportunities to
move;

(3) the payoffs received by each player for each combination of moves
that could be chosen by the players.

o Example 1:

* Information Set-

@ For games with imperfect information, some previous moves are
not observed by the player with the current move.

o To present this kind of ignorance of previous moves and to
describe what each player knows at each of his/her move, we
introduce the notion of a player’s information set.

An information set for a player is a collection of decision nodes
. satisfying:
(i) The player needs to move at every node in the information set.
(ii) When the play of the game iﬁ Ii a node in the information set,
the player with the mo hich node in the set has

(or has not) been reached.

o In an extensive-form game, a collection of decision nodes, which

constitutes an information set,.is connected by a _dotted line.
N——

@ We can use information set to differentiate perfect and imperfect
information.

o A game is of perfect information if every information set is a

singleton, and of imperfect information if there is at least one
non-singleton information set.

(A

o In Example 1, the game tree begins with a decisionilqug for
player 1, which is also the initial node of the game.

o After player 1’s choice (L or R) is made, player 2’s decision node is
reached. And player 2 needs to decide whether to choose L' or R'.

o A terminal node is reached after player 2’s move (i.e., the game
ends), and payoffs of players are realized.

TIPS, &7 dechsion node b EWA VR Rit

e (ii) implies that the player must have the same set of feasible
actions at each decision node in an information set, otherwise the
player could infer from the set of actions available that some
node(s) had or had not been reached.



o Let’s consider a two-player simultaneous-move (static) game as o Example 3:

follows: e Player 3 has a non-singleton information set and a singleton

1. Player 1 chooses a; € Ay information set.

2. Player 2 does not observe player 1’s move but chooses an as € As;
3. Payofls are u; (a1, a2) and ua (a1, az).
o We need an information set to describe player 2’s ignorance of
player 1’s actions.

o The above static game of complete information can be represented
as a dynamic game of complete but imperfect information.

 Strasegy
- -3 "4 =/ - A
A strategy for a player is a complete plan of actions. It specifies a = % Sk #;&‘k al “;\eﬁhﬁ J\-‘h@ﬁ%’ t
DQ E feasible action for the player in every C?;Zingency in which the player %5 2 %ﬁm . Q\%, ﬁ&kﬁfz@ (R 2:R').
TREL0S

might be called on to act.

@ An equivalent definition: A player’s strategy is a function which o In Example 3:

assigns an action to.each information set (not each decision node o Player 1 has two strategies: L and R.

belonging to the player. o Player 2 has four strategies:
@ An action and a strategy do not make a big difference in static

games, while they do in dynamic games. (', (L',R);(R,L); (R, R).

(, %’ Z\FE fg 2{%‘&%&“& o Player 3 has four strategies
+ Subgune — Pecfect NE . B33 TRE R . (B I B R B 5 LR R

A subgame in an extensive-form game o Example 4:
% (a) begins at a decision node n that is but @ Player 3 has 4 singleton information sets.

is not the game’s initial node);

(b) include decision and terminal nodes following node n in
the game tree (but@ghodes that do not follow n);

(c) doeny information sets (i.e., if a decision node n’ follows
n in the game tree, then all other nodes in the information set
containing n’ must also follow n, and so must be included in the
subgame).

A Nash equilibrium is subgame-perfect if the players’ strategies
% constitute a Nash equilibrium in every subgame.

‘b' %ﬁNE 1’31%%“5&% %i&'— o Player 3 has 16 strategies.

o For instance, the strategyl([/’, R", R", ') means:
» . P
’Llu;?- *‘mfe dl‘Mlmc ﬂw’"& of MMPW m‘fvrww?lm'\ a g"%' if player 1 plays L and player 2 plays R/, then player 3 plays
pecfet NE . (TR #4218 Ro),

if player 1 plays R and player 2 plays L', then player 3 plays|
if player 1 plays R and player 2 plays R', then player 3 plays

o In Example 1, there are two subgames: in the left subgame, the
Nash equilibrium involves the player 2 choosing R'; in the right
subgame, the Nash equilibrium involves the player 2 choosing L'.

o The subgame-perfect Nash equilibrium is (R, (R, L)).

@ We can use thick lines to represent the equilibrium paths.

3,1 1,2 2,1 0,0

o Subgame-perfect Nash equilibrium is closely related to two e Example 1:
previous concepts:
@ backwards-induction outcome
@ subgame-perfect outcome

What’s the difference between anlequilibriu;l nd anloutcom(;T
o An equilibrium is a collection of players’ strategy profiles/ while an

outcome is a collection of players’ actions.

o Consider the following two-stage game of complete and perfect 31 1,2 21 0,0
information: o In Example 1:
L. Player 1 chooses an action a; € Ay; o (R, L) is the backwards-induction outcome, while (R, (R, L)) is
2. Player 2 observes a1 and then chooses an action as € Ao; the subgame-perfect Nash equilibrium.
3. Payoffs are uy (a1, a2) and uz(ay, az).
°

The best response Ro(a1) solves maxg,e 4, u2(a1, a2). o In the Stackelberg model:

a0 5 1 1 3 ija — a—c .
o The backwards-induction outcome is (¢j, ¢5), where ¢f = %3¢ and

o The backwards-induction,outcome is (aj, Ra(a7)). g5 = “7¢, while the subgame-perfect Nash equilibrium is

a; solves maxg, e, w1(a1, Ra(a1)).

o The subgame-perfect Nash equilibrium is (a7, Ra(-)). (6. Ba(ar)), where Ro(g) =T, a<a-c
1 ) - .
o Note that Ry(a}) is an action, while Ry(-) is a strategy for player 2. 0, @ za—c



o Consider the following two-stage game of complete but imperfect
information:
o Players 1 and 2 simultaneously choose actions a; and ap from the
feasible sets A; and A, respectively.
o Players 3 and 4 observe the outcome of the first stage (a1, az) and
then simultaneously choose actions az and a4 from the feasible sets
Asz and Ay, respectively.
o Payoffs are u;(ay, az, as, aq) for i =1,2,3,4.
@ For each given (a1, a2), players 3 and 4 play the Nash equilibrium
in stage 2
(a5(ar, a), aj(ar, ap)).

o Then, player 1 and player 2 play a simultaneous-move game with
payoffs
ui(ar, az, a3(a1, ap), aj(ay, ag)), i= 1,2

e Suppose (aj, a3) is the unique Nash equilibrium in stage 1.

o Then the subgame-perfect outcome is
(ai, a3, a3(a], a3), aj(aj, a3)).
@ The subgame-perfect Nash equilibrium is

(‘ﬁv a; a;(alv a2)7 arI(alv aQ))'

E vs. Subgame - Perfecti NE.
G ot

o In Example 1, the normal-form representation is

o A Nash equilibrium m pe subgame-perfect.

Player 2
&.r) (L,R) (R.LI) (R.F)
L 3,1 3,1 1,2 1,2
Player 1
R 2,1 0,0 2,1 0,0

e Two Nash equilibria: (L, (R, R')) and (R, (R, L))

@ Only one subgame-perfect Nash equilibrium: (R, (R, L))

o The Nash equilibrium (R, (R, L')) is subgame-perfect, because R’
and L' are the optimal strategies in the left and right subgames,
respectively, where player 2 is the only player.

@ On the other hand, the Nash equilibrium (L, (R, R')) is not
subgame-perfect, because when player 1 chooses R, R’ is not
optimal to player 2 in the right subgame, i.e., R is not a Nash
equilibrium in that subgame.

e One can think the strategy (R, R') by player 2 as a threat to
player 1.

o Nash equilibria that rely on non-credible threats or promises can
be eliminated by the requirement of subgame perfection.

° Subgéme—perfect Nash equilibrium is a\rgﬁ\n_e;n\eg of Nash
equilibrium, i.e., *%\x'ﬁ\
{Subgame-perfect Nash equilibria} C {Nash equilibria}
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o In a long-term relationship, one must consider how his/her current
behavior will influence others’ behavior in the future, or how
threats or promises about future behavior can affect current
behavior.

o In these dynamic situations, one might care about (reputation”,
which is often used to describe how a person’s past actions affect
future beliefs and behavior.

o We uge repeated games tozstudy such interactions among
players:

o In repeated games, we are interested in how repeated interactions
among players would affect their behavior.

e Two types of repeated games:

o finitely repeated games
o infinitely repeated games

Finitely  Repedted  Glames

+ 2-stege Rismers' Dilewma A~ BT k- Lty BT REL R 1B E.

o The two players play the simultaneous-move game twice;

Wbserves the outcome of the first play before the second
game begins;

o The payoff of each player in the whole game is simply the sum of
two payoffs in both stages (i.e., no discounting).

@ We can use backwards induction to solve the game.

o In stage 2, the unique Nash equilibrium is (L;, L2), in which each
player receives 1.

e In stage 1, the two players play the following equivalent game:

Player 2
Ly Ry
Ly ]2,2]6,1
Pl 1 2 2
WS R 1,655

e Hence, (L1, L2) is the unique Nash equilibrium in stage 1.

o The subgame-perfect outcome: (Lj, Ly) is played in both periods. = NE: (LL.‘L,‘U,L“LI)' L L. b, Lk))
ja%lz @ (Zh13 7% D)
o Let G= ui, ..., up} denote a static game of complete
ﬁ_‘ informatlon in which players 1 through n simultaneously choose
actions a; through a, from the action spaces A; through A,, and
the payoffs are u;(ay,. .., a,) through u,(a, ..., ap).

@ The game G is called the stage game of the repeated game.

in which G is played T times, with the outcomes of all preceding plays
observed before the next play begins. The payoffs for G(T) are simply
the sum of the payoffs from the T stage games.

D E Given a stage game G, let G(T) denote the finitely repeated game

If the stage game G has a unique Nash equilibrium then, for any finite
T, the repeated game G(T) has @ubgame—perfec‘c outcome:
the Nash equilibrium of G is played inp/Gvery stage.

\\é“’

o In the Prisoners’ Dilemma example, the unique outcome in each
period is (L1, L2) regardless of how many times the game is played.

o The result in the above proposition can be extended even if G
itself is a dynamic game of complete information.

Wh a5 ‘l‘-(— he stoge Gane 61 hos mupiple NE?

Then there may be subgame-perfect outcomes of the repeated

game G(T) in which, for any ¢ < T, the outcome of stage ¢ is not a
N S

ash equilibrium of G

\/\_/—\_/——.

—



Consider the following game:

Player 2
Ly My Re
Ly |1,1]5,0]0,0
Player 1 M; | 0,5 [ 4,4 0,0
Ry 10,0]0,013,3
There are two Nash equilibria: (L, L2) and (R1, R2).

Suppose the game is repeated twice. % 2 (ﬁoﬂz \ Z\% sW)

Then it is possible that the first-stage outcome is neither (L1, La)
nor (R, Ry) in a subgame-perfect Nash equilibrium.

o Consider, for example, player ¢'s strategy: %é%%“-gi‘ '@@‘3
e play M; in the first stage; - V@f\f‘& §
o play R; if the first-stage outcome is (M, Ms); otherwise, play Lj. %é%éﬁﬁ?@ﬁi .
o It can be verified that the strategy profile constitutes a J
subgame-perfect Nash equilibrium, in which the first-stage e 1 (M M)
outcome is (M, Ma). gm%e 2: (RuR2)
T2pS. 241 R 2R RE R L i0REL Poger) e sogez DX,
<h R E_Z\’ﬁ%‘(‘g%(ﬁ‘ ,ﬁ%")’/‘ NE ? Z stoge | % {%@L\ 2 (LM +(Lu) = (6D, X

% O HEF (R HEREM M), F= WEWERESL 7 I %;m\  Bwne -
. Puer 2 TERE My bbb 20> BN BT 2 ORRRMHBLAS .
g L {\2\ SRR (Steger —Lt.stagd%ﬂ)

=PRI BN T}%@J{ﬁw @Q@%@’\%Sﬁuﬁe WA

= (1N,

T +2/0/-2.

v bl v | v (kedogmik sl kb
(LW|RR)| v LA ERREE
"4

V4 v \%{5\\; ﬁaa¢ (MY, M)

_ Stage 2 ?\ e \L\. Rl: LlnRthR‘) S -
. S| 3*0%6 \ ﬁa z\@ﬂ‘%m%hﬂ% ¢ i?\?ﬂ@rl: (L)L . Lz R L2,R) 3('26@‘3%
. - 2% :

Thio + LA %y stage 2 ONE. H BTES 72 Stage 280" %k CRE. R oot

BAsnge | IRTpWHS .
_ G 24z sgez BLE, AR BT IP6/H . ME. (€5 (R.L2)).
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Let ; be the payoff in stage t. Given the discount factor ¢ € (0,1), the

Dé. Wthe infinite sequence of payoffs mq,mo, ... is

o0
1 + 0my + 527r3 +-.-= Z oLy,
=1

Given a stage game G, let G(oo,d) denote the,infinitely repeated
-De_i. game in which G is played forever and playeis\ﬁm
—  Tactor 0. For each t, the outcomes of the ¢ — 1 preceding plays are

observed before the #" stage begins. Each player’s payoff in G(co, ) is

the present value of the player’s payoffs from the infinite sequence of
stage games.

o Consider the following infinitely repeated game of Prisoners’ Player 2

e % Dilemma: Ly Ry
o In the first stage, the two players play the stage game G and receive Player 1 Ly | 1,150

payoffs 71,1 and 72,15 R 0,5]4,4

o In stage t, the players observe the actions chosen in the preceding
t — 1 stages, and then play G to receive 7 ; and w2 4;

o The payoff of the infinitely repeated game is the present value of the
sequence of payoffs: > oo, 6"~ !m;, for player i =1,2.

o There are infinitely many strategies for the players.

e Some common strategies:
noncooperative strategy:

W lay L; in every stage )
@l(grim {rigger strategy: R
e play R; in the first stage;
e in stage t, if the outcome of all ¢ — 1 preceding stages has been
_‘{&%—‘{& (R1, R2), then play R;; otherwise, play L;

E {0 Fitfor-tat (or tit for two tats) strategy -1 Ha 7IFEH b  tHRAREH L

LA @ \carrot-and-stick strategy (or two-phase strategy)
T



. STraijes i Infinely Repedted Games.

o We focus on the first two strategies. o In the Prisoners’ Dilemma example, the cooperative outcome,
o If both players adopt the noncooperative strategy, then (Li, L) is which cannot be achieved in the stage game or in any finitely
repeated forever. repeated game, can be sustained if the stage game is played
o Using a trigger strategy, player ¢ cooperates until someone fails to forever.
cooperate, which triggers a switch to noncooperation forever. o The condition is that(the discount factor is sufficiently large (or
o If both players adopt the trigger strategy, then the outcome of the players are sufficiently patient).
infinitely repeated game is (Ry, Rp) in every stage. Folk theorem: cooperative equilibria which do not exist in static
o Question: Is it a Nash equilibrium in the infinitely repeated game games can be achieved in repeated games.
where both players adopt the trigger strategy (i.e., cooperation is
achieved)?

Cloam -

Whplayers adopting the noncooperative strategy is a Nash
equilibrium.
Proof.
@ Assume player 7 plays L; in every stage.
o Then player j's best response is also “to play L; in every stage”.
Cloam - -
Both players adopting the trigger strategy is a Nash equilibrium if and Miﬁﬂa ") V\Q@Bq &\ﬁd\ %% %ﬂ*%

only i;‘i Ozofl/ + R core, Hsmemvklatk i,
o Assume player ¢ has adopted the trigger strategy. We seek to show Player 2 \(E} %ﬁ %-m W%éﬁﬁ%@ﬁﬁ?ﬁ%)

player j's best response is also to adopt the trigger strategy.

Ly Ry

@ Case 1: The outcome in a previous stage is not (R, Rz). Since 1,150

player i plays L; forever, player j’s best response is also to play L; Player 1 ’ 4’ 1
forever. Ry | 0,5 >

o Case 2: In the first stage or in a stage where all the preceding
outcomes have been (R, Rz), if player j plays the trigger strategy,
then he should play R; in this stage, and the outcome from this
stage onwards will be (Ry, Re) in every stage. Thus player j’s
payoff from this stage onwards is

> 4
t—1 __
;4><5 =1

o If player j plays L; in this stage, player i still plays R; in this stage
but L; forever from the next stage. Thus player j will also play L;
from the next stage onwards. This means player j's payoff from
this stage onwards is

> 0
3 t__
By 8'=5+— 5
=1
@ Therefore, playing the trigger strategy in this case is optimal iff

4 ]
— > — > 1/4.
176_5+175®5—1/4

o Summarizing Cases 1 and 2, the trigger strategies constitute a
Nash equilibrium for the game iff § > 1/4.

Clgan-

The tri -strategy Nash in the infinitel ted
e rlgg:er strategy Nash equilibrium in the,infinitely repeate
Prisoners’ Dilemma game erfect.
Proof.

o In an infinitely repeated game, a subgame is characterized by its
previous history. The subgames can be grouped as follows:

o (i) Subgames whose previous histories are always a finite sequence
of (R, Ry).

e (ii) Subgames whose previous histories contain other outcomes
different from (R, Ra).

e For a subgame in Case (i), the players’ strategies in such a
subgame are again the trigger strategies, which is a Nash
equilibrium for the whole game and thus for the subgame as well.

e For a subgame in Case (ii), the players’ strategies are simply to
repeat (L, L) all the time in the subgame, which is also a Nash
equilibrium.
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@ One-deviation principle: A strategy profile is a syhgame-perfect
Nagh equilibrium if and only if, for each player ¢ and for each
subgame, no single deviation would raise player ¢’s payoft in the

subgame.
| Player 2
9. Msners’ Dilemma. L R
Ly | 1,150
Pl 1 : :
WL R (0,5 ] 4.4

+ Feasible Poyoff

D The payoffs (z1,...,z,) are ,{easible in the stage game G if they are a
—2 convex combination (i.e., a weighted average, where the weights are all

|nonnegative |and|sum to ond) of the pure-strategy payoffs of G.

o In the Prisoners’ Dilemma example, all pure-strategy payoffs
(1,1), (0,5), (4,4) and (5,0) are feasible.

o The payoffs (2.5,2.5) are also feasible, which are a convex
combination of the pure-strategy payoffs of (1,1) and (4,4).

o All feasible payoffs are depicited in the shaded region of Figure 1.

. Avemﬂe Pwrﬁ‘- :

De -S— Given the discount factor 0, the@w& the infinite

sequence of payoffs 71, ma, ... is

(205 o in=2= FHaRkiE.

£ | sum

—~ |Eg z
AT &5 52=(HZ M2

KR =
 Fricdmom Theotem .
Let G be a finite, static game of complete information. Let (ei, ..., ep)
denote the payoffs from a Nash equilibrium of G, and let (1, ..., z,)

denote any feasible payoffs from G, where z; > e; for each player ¢. If
the discount factor ¢ is sufficiently close to one, then there exists a
subgame-perfect Nash equilibrium in the infinitely repeated game
G(o0,0) that achieves (z1,...,2,) as the average payoff.

Intwition: § REBRAT, Fu 1849 NERDH TR

D)t
CER: Gllisvon  bebween Cournst Duopolpsts

@ In the Cournot model, the unique Nash equilibrium involves each
2
firm producingg. = %3¢ and earning a profit of 7. = %.

o If there is a monopolist, then the monopoly quantity is ¢, = “5*

_ (a=0)?
and the monopoly profit is m, = ~—=.

o If the two firms can.collude to produce 42 each, then they jointly
produce the monopoly quantity g,. Each of them obtains a profit

m _ (0=0)?
of B = =g,
o If firm ¢ produces % 4 then the best response for firm j is to
produce qq = w. In this case, firm 4’s profit is 3<032" , while
. . _ 9(a—0)?
firm j’s profit is mq = =7

o Consider the infinitely repeated game based on the Cournot stage
game when both firms have the discount factor 0 < § < 1.

o produce half of the monopoly quantity 4, in the first period.
o in period ¢, produce %* if both firms have produced %* in all the
preceding ¢ — 1 periods; otherwise, produce the Cournot quantity ¢..

Qm

o Here the cooperative output is and noncooperative output is g.

o Question: Is the collusive outcome sustained?

fhfs 2Bt
< oo

~ .

c

§

Pogee | L (L, L,
\?\maerz Rl (| «—

(4,4)

(L1

Figure 1: Feasible payoffs in Prisoners’ Dilemma

Figure 2: Subgame-perfect Nash equilibria in infinitely repeated games

S
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For the infinitely repeated game with the Cournot stage game, both

W\ firms playing the trigger strategy is a subgame-perfect Nash

equilibrium if and only if § > 1%.
Proof.

@ Suppose firm ¢ has adopted the trigger strategy, we need to show

firm j’s best response is also to player the trigger strategy in any
subgame.
o There are again two types of subgames to be checked.
o First, if a quantity other than %* has been chosen by any firm
before the current period, then firm ¢ chooses ¢. from this period

onwards. The best response for firm j is also to choose ¢, from this

period onwards. Thus, playing the trigger strategy is optimal in
this subgame.

@ Second, in period ¢, if the outcomes of all previous periods are
(%2, L), firm j’s present value of the payoffs from this period
onwards if it chooses the trigger strategy is

Tm

2(1-0)

If firm j deviates from the trigger strategy by choosing a quantity
other than 4 then firm i produces £* in this period, but ¢. from

period ¢+ 1 onwards. Thusi it, is Oﬁtimﬁ Iai gim j to produce qq
in this period and ¢, from period ¢+ 1 onwards. Thus, firm j's

2 b
present value of the payoffs from period ¢ onwards is

T+

Te.

S
1-0

trigger strategy iff

Tm J
> [ >
31— 0) _7rd+1_57rc<i>6_

ﬂ-d_%n, 9

17

T4 — Te

What happens if players are less patient, i.e., § < %? Are there
any other strategies that can support the collusive outcome as a
subgame-perfect Nash equilibrium? = Yes. 12?@%3{&7& )
Consider the two-phase (or carrot-and-stick) strategy:

o in the first period, produce half of the monopoly quantity %;

o in period ¢, produce %* if both firms produce 4* or both firms

produce z in period t — 1; otherwise, produce .

This strategy involve a (one-period) punishment phase in which
the firm produces z and a (potentially infinite) collusive phase in
which the firm produces %

Such a strategy punishes
o o .
e a Erm éor geviating irom tEe punistment pEase ( Z\% Ei 12 Werse D‘ﬁ')

If both firms produce z, the profit of each firm is denoted by
m(2) = (a — 22— ¢z, where -= < 1.

If firm ¢ produces z, the best response of firm j is to produce

qap = “=5—< and the corresponding profit is denoted by
_ (a—z—0)?
Tap(2) =

There are two types of subgames:
o[ (i)|collusive subgames: the outcome of previous period is either
.45 or (z.2);
o |(ii)|punishment subgames: the outcome of previous period is neither
g, L) nor (z, ).
To show both firms adopting the two-phase strategy is a
subgame-perfect Nash equilibrium, we use the one-deviation
principle.

Suppose firm 7 has adopted the two-phase strategy.

In collusive subgames, if firm j also adopts the two-phase strategy,
by s () B

) M, 7_8 7"3\2

GRS

o If fir

1-46 \-
j deviates in this period hen firm 7 still chooses %” in
this period but z in the next period. Then firm j would choose ¢q4

in this period and z in the next period. The payoff from deviation

2l

5% lﬂ
1-62"™

Z,LIL QM r‘\ab@%%;f‘k

ma+ o0m(z) +

Therefore, trigger strategy is the best response for firm j to firm #’s

[f&a]

o Thus, choosing the two-phase strategy is optimal iff

2]
(14 5)%7% S A

wwHae 1)

o{rfl/gw_t’sgb\g;%\___mes,it is optimal to choose the two-phase
strategy for firm j i -
= F-¥RZERoadimrc

7(2) + 0= > map(2) + 07 (). i (2)

2 SRBERNEY

o Both firms adopting the two-phase strategy is a subgame-perfect
Nash equilibriumiff (1) and (2) hold.

o The two conditions (1) and (2) can be rewritten as

5 @ﬂ - ﬂ(x)) > 7o 2w, 3)

1
1 <§7rm - 7r(:c)) > map(2) — 7(z). (4)
o Intuitions: the gain this period from deviating must not exceed
the discountea value 0! %Ee 0ss nex% perloa !rom pumsgmen%.

o Consider the case 6 = % < 1%.

o Condition (3) is satisfied iff _2- < %
o Condition (4) is satisfied iff 5 < %=
e Thus, two-phase strategies constitute a subgame-perfect Nash
equilibrium in the game iff g(a - <z< %(a —0).

= § e 1% IR IRERALDE RSO,

or

e
1
S 2"

>
=

olw
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Tedhis
* Utfimatum &G'ms

e Suppose player 1 makes an offer (s1, s2), where s; is the share for 1
player i =1,2, and s; + s = 1.
o After observing the offer from player 1, player 2 decides whether 51
to accept the offer or not.
o If the offer is accepted, then each player i receives s; otherwise, A R
there is an exogenous scttlement (31, 52) which involves player ¢
receiving $;, where 3 + $o g 1.
o For instance, 3; = % = 0 means that both players receive nothing (1, 82) (51, 32)

if no agreement is reached. Figure 1: A game tree for the ultimatum game

. Plalder 2 has infinite Strategies.  e.g. fh' oSzt

R #S2<¢d

* There ore Winitel, Moy NE.

- Bub & Wique Subgane - perfesh NE : Plager | makes (k5,5
leou 2 A, 4 gz?gz
{R, 154 szfs“;

< TR0

+ Alfunating - Offec  Giame — player 2 @ vy 4473 4. T1%s. 283 RRE

@ Suppose now the two players make alternating offers in each
period.

@ The common discount factor is 0 < § < 1. TE‘REM

The three-period bargaining game is:

(la

°

Naoy

In the first period, player 1 proposes s;(1) for himself and s»(1) for

player 2.

(1b) Player 2 either accepts the offer to end the game or rejects the offer
to continue the game.

(2a) In the second period, player 2 proposes s1(2) for player 1 and s3(2)
for himself.

(2b) Player 1 either accepts the offer to end the game or rejects the offer

to continue the game. (6%5,6%(1 — 5))
(3) In the third period, player 1 receives a share of s and player 2
receives 1 — s, where 0 < s < 1. Figure 2: A game tree for the alternating-offer game

o Let 51(3) =sand (3)=1—s.

o In general, in period ¢, s1(t) and s2(t) are offered to players 1 and
2, where the offers satisfy
Sl(t) —+ SQ(t) =1.
o The present value of payoff to player i is 67 1s;(¢) if the bargaining
game is ended in period ¢.
e We use backwards induction to solve the game. - 6-/‘[ ?/(T E&-‘Hf% \ /l‘ WM «Tf%?\‘ﬂa Sv.baa.me,.

@ In the second period, player 2 is at the move. Because the payoff
to player 1 in period 3 is s, player 2 will offer s1(2) = ds to player 1
and $2(2) = 1 — s to himself. Player 1 accepts the offer.

o In the first period, player 1 will offer §(1 — ds) to player 2 and
1—46(1—és) to himself. Player 2 will accept the offer and the
game ends.

° Thackwards—induction outcome of the three-period
game 1s:

o Player 1 offers the settlement
si(1) = 1-6(1-4s),
(1) = 6(1—9s).

o Player 2 accepts the offer.
o The game ends in period 1.



. Al*l-e\-v\aﬁn% - Offec Game wWHh Inﬁvﬁ'\‘ﬁ Fociools .
= GRBMELL.
e Suppose the alternating-offer game is repeated forever until one
player accepts an offer.

The infinite-period game is the same as the three-period

bargaining game except that the exogenous settlement in step (3)

is replaced by an infinite sequence of steps (3a), (3b), (4a), (4b) - —

and so on. (’42 <R HART 7 2 Lfra.

The game beginning in period 3 is identical to the game beginning —2 7&-%% : %’ 3 gﬁ %"% | TR %?ﬁ @,@Tgif

in period 1, because it is also an infinite-period game.

If there is a unique backwards-induction outcome s, then f(s) = s,
where f(s) =1 —6(1 — ds) and hence s = 11?.

We aim to show the backwards-induction outcome is indeed
unique.

Let! s, be the highest payoff player 1 can receive in any

backwards-induction outcome of the game as a whole.

o We can also regard(s, as the third-period payoff for player 1., Then ‘5 (sm): %ﬂﬂ'ﬂ F\aaer | & Uz
the result of the three-period bargaining game says that, using s,
as the exogenous settlement s,

A I ———
f(sh) =1- 6(1 — (5éh)

is a payoff for player 1 in period 1.

Hence f(sp) < sp, since s, is also the maximum payoff in period 1.

Because any first-period payoff for player 1 can be represented in
the form of f(s) with some third-period payoff s, there exists a s3
such that s, = f(s3). Because f{s) is an increasing function of s and
s3 < sp, then s, < f(sp). Therefore, we must have s, = f(s3).

Let s; be the lowest payoff player 1 can receive in any
backwards-induction outcome of the game as a whole. Similarly,

(&) = s1.

@ Solving f(s) = s, we obtain a unique solution s = ﬁ
o Therefore s, = s; = 11?, which implies that s* = 1}75 is the unique
backwards-induction outcome.
o The unique backwards-induction outcome is:
e In the first period, player 1 offers s* = ﬁ to himself and 1 — s* to

player 2.
e Player 2 accepts the offer.
o The game ends.

The game has infinitely many periods, but ends at the first period.

The player with the first move gains a higher payoff (i.e.,
first-mover advantage).



Lec (0. Static Games oj’— Incomplete L\fmna.ﬁan
. Introoduction

o In the auction example, each player’s payoff function is no longer
common knowledge = buyer 7's payoff function inown by
other buyers.

o This is an example of incomplete information games, in which
at least one player is uncertain about another player’s payoff

function.
o Games of incomplete information are also called Bayesian games.

o Two types of Bayesian games: static vs. dynamic

+ Coumet Caw\Pe‘\-\-Hon widler As«zmmdﬂc L\-furma:t?m

o Consider the Cournot duopoly model with an inverse demand
function P = a — @, where Q@ = ¢; + ¢ and a > 0.

e Firm 1’s cost function is ¢1(q1) = cqr-

e Firm 2’s cost function is

(@) crqa, with probability 6,
C =
2B crq2, with probability 1 — 6,

where ¢, < cgand 0 < 0 < 1.

e Different from the standard Cournot model, the information is
asymmetric:
o Firm 1’s cost function is known by both firms = ¢;(-) is common
knowledge.

ey. Auction .

@ Suppose a seller wants to sell a product among a group of buyers.
e Each buyer is willing to pay v; for the product, where v; is buyer
7’s private information, i.e., only buyer ¢ knows its valuation v;,

but not all other buyers or the seller.

e In order to sell the product, the seller runs an auction (e.g.,
first-price, second-price).

o Each buyer must bid for the product in order to be the winner.

o Firm 2’s cost function is completely known by itself, but not known -2 %ﬁ—@i% CH or CL

by firm 1 = ¢(-) is not common knowledge.

o Firm 1 only knows the distribution of firm 2’s marginal cost, i.e., cy_ | %‘2 é 2 Cl—\;f‘ Ce ﬁamgf

with probability 6 and ¢, with probability 1 — 6.

o What will be the quantities chosen by the firms?

o Naturally, firm 2 may want to choose a different (and presumably
lower) quantity if its marginal cost is high than if it is low.

o Firm 1 should rationally anticipate that firm 2 may tailer its
quantity to its cost in this way.

o Leti ¢5(cpm) and g5(cr) denote firm 2’s quantity choices when its
marginal cost is ¢y and ¢y, respectively, and let ¢j denote firm 1’s
single choice of quantity.

o If firm 2’s cost is ¢; (j = L, H), it will choose ¢3(c;) to solve

max(a—di = & = &)@

o Since firm 1 knows that firm 2’s marginal cost is ¢y with
probability of § and anticipates firm 2 to choose ¢5(¢;) depending
on its cost, firm 1 chooses ¢} to solve

max§(a — g = g3(en) — ) + (1 = O)(a— a1 =~ @ler) — )qu.

o The (interior) first-order conditions (or best response functions)

for the firms are

* a— q* — CH
don) = AT
* a— q* — CL
Ble) = A
« _ a—0g(cy) = (1 -0)g(cr) — ¢
@ = 9 .
o The equilibrium of this game is (¢}, (¢(cn), ¢5(c))), where
. a—2c+0cg+(1—0)ct
aq = 3 I
N a—2cg+c 1-86
B(cn) = 3 + 5 (er—cr),
. a—2c,+c 0
Gler) = —a g((:H— cr).

o We know ¢5(cy) < ¢5(cr) = firm 2 produces less when its
marginal cost increases.
e Firm 2 has two payoff functions

ma(q, geL) = (a—qu—q—cL)e,
ma(q, @cr) = (a—q — @ —cn)g.

o Firm 1 has only one payoff function

m(q, @;c)=(a—q—¢@—caq.



o Firm 2 knows firm 1’s payoff function, while firm 1 does not know
firm 2’s payoff functions but only knows the probability
distribution.

o This is an example of (static) Bayesian games.

. Static Baaeswm Glames

o Consider a general static Bayesian game.

o Let player s possible payoff function be wu;(ay, . .., an; t;), where a;
is player #’s action an nah called player z"s\t',yge'z which belongs to
a set of possible typl: type space).

o Player #'s type ¢; is his private information, and each type t;
corresponds to a different payoff function of player i.

o Let t—; = (t1,-.., tim1, tit1,- - -, tn) be the types of other players

and T_; be the set of all ¢_;.

es, but only knows
i\t _;, which is ¢’s belief
about other players’ types, givenlz"s knowledge of his own ¢;.

A,

The normal-form representation of an n-player static Bayesian
De . game specifies players’
1) action spaces Aj,..., Ay,

2) type spaces T1,..., Ty,
3) beliefs p1, ..., pn,
4) payoff functions vy, . . ., Up.

We denote this game by

G={A1,.. ,ApTi,..., Toipr, o, Doy Uty - - U}

e.%. o In the Cournot game with asymmetric information,

° A1 = A2 = [(), OO)
o Th ={c},and Tb ={cp,cL};
o pi(enlc) =0,p1(cple) =1 —0, and pa(cley) = po(cler) = 1;
o Payoff functions are
7F1(¢I17¢12;C) = (a— @ — g2 — C)(Ih
7T2(1117 q2; CL) = (a— a1 — q2— CL)(]27
(g1, esen) = (a—q1— g2 — cH)go.

a ES
° The\t_i};ulgg of a static Bayesian game: e % . ‘5:9( Cp ;‘ G‘IQIMQ. a\ﬁ\/cv

&/.p/\ 1. Nature draws a type vector ¢t = (t1,...,t,), where {; € T;
é&/\%"@ 2. Nature reveals t; to player ¢, but not to any other players; N
k\% 3. The players simultaneously choose actions, player i choosing a; € Aj;

. 4. Payoffs w;(ay, ..., a,; t;) are received.

e By introducing the frictional moves by nature in (1) and (2), we
have described a game of incomplete information as a game of
imperfect information.

o We often assume that the nature draws t = (#,.. ., t,) according
to the prior probability distribution p(t), which is common
knowledge.

o Then the belief p;(t_;|¢;) can be computed by Bayes’ rule

N\ AA—————

(it = Pt
pl(tilm) - ZLLLGTJp(tL“ ti) :

o Two remarks:

o First, there are games in which player ¢ has private information
not only about his or her own payoff function but also about - -%/T?\o”or ":]V“:%‘Jél-?l\wafiz.
another player’s payoff function. We write player s payoff
function as ui(ai, ..., an; 1, ..., tn).

@ Second, we typically assume that plavers’ types are independent
i.e., pi(t—i|t;) does not depend on t;, which can be denoted by
pi(t_;). But p;(t_;) is still derived from the prior distribution p(¢).

D In the static Bayesian game Iad Z\@i@ﬁﬁ% g E/Afﬁiv .
€Y. ¢= {A1,..  Aw Ti, .o, TPty -, Py W, - - -, Un}, & strategy for

player 7 is a function s;(t;), i.e., s;: T; — A;. For given type t;, si(t;)

gives an action of player i. Player 7's strategy space 9; is the set of

all functions from T; into A;.

o In the previous example, (¢5(cx), ¢(cr)) is a strategy for firm 2,
while ¢} is a strategy for firm 1.
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In the static Bayesian game
De c G={A1,.. Ay T1, ..., To;p1, .., Do U, - - -, Up}, the strategies

s =(sf,...,s;) are a (pure-strategy) Bayesian Nash equilibrium if for
each player ¢ and for each of ¢'s types t; € T;, si(¢;) solves
, S o
max > ui(s” (), ag t)pi(t_its). FHAE
a;€A; et

o In a general finite static Bayesian game (finite players, finite
actions, and finite types), a Bayesian Nash equilibrium exists
perhaps in mixed strategies.

o In a Bayesian Nash equilibrium, each player’s strategy is a best
response to other players’ strategies.

0 In other words, no player wants to change his or her strategy
terally given other players’ equilibrium strategies, even if the

change involves only one action by one type.

@ A Bayesian Nash equilibrium is simply a Nash equilibrium in a
Bayesian game.

o In the Cournot game with asymmetric information, the strategies
(¢, (5(cm), g5(cr))) are a Bayesian Nash equilibrium since neither
firm 1 nor firm 2 wants to deviate from its equilibrium strategy.

+ Mixedd Strutegies Reuistech.

o Consider the game of battle of the sexes

Wife
Opera  Football
Opera 1,2 0,0
Husband : :
WP Rootball | 0,0 2,1

@ There are three possible Nash equilibria: (Opera, Opera),
(Football, Football) and ( Opera+ 3,Footbadl fOperaJrlFootball)A
o In the mixed-strategy Nash equilibrium, the husband plays Opera
with probability 1/3 and Football with probability 2/3, while the
wife plays Opera with probability 2/3 and Football with
probability 1/3.
o Suppose the couple are uncertain about the payoffs for each other.
o Consider the following payoff matrix
Wife
Opera  Football
Opera | 1,2+ ¢, 0,0
Football 0,0 24ty 1
o Here t,, is privately known by the wife, while ¢, is privately known
by the husband. )

o Assume that ¢, and ¢, are independently\drawn from a uniform
distribution on [0, 2], where z > 0.

Husband

o The normal-form representation of this static Bayesian game is
G= {Aha Ay Th, Tw; Phy Pw; Un, uw}:
o A, = A, = {Opera, Football};
o Tyh=Ty=1[0,1;
o The husband believes that ¢, (the wife believes that #;,) is uniformly
distributed on [0, 2;
o up and u, are given before.

o What are players’ strategies?

o We can construct a Bayesian Nash equilibrium (s}, s},), where

. Football, if t, > #, . Opera, if ty > t,
sy, = . _ and s, = . -
Opera, if t, < tp, Football, if &, < t,.

e Note t, and %, are two critical values, which need to be
determined.

Football if #, exceeds the critical value #,, and choose Opera
otherwise.

° Given. the wife’s strategy, thpected payoffs Ofr“‘\ﬁrqzﬁ a}ﬁ] %{n
choosing Opera and Football are Pltw ’tk)) Flm

up(Opera, s;|ty) = Pr(s}, = Opera) - 1 + Pr (s}, = Football) - 0

t t
(1_&’).14_*“"0:1_*”1
x x T

w zw w
up(Football, s5,|ty) = <1 - t—> 04+ = (24 th) = —(2+ t).
T z T

and



o Thus, choosing@pe% optimal iff

tw . tw - x
1- 2> 204t et <fh=——3 1) —
L2 2t eth<th= 1)

o Similarly, given the husband’s strategy, tcted payoffs

of playing Opera and Football are

? ; [
uy(Opera, s |t,) = Zh (24 ) + (1 - f) 0= f(z + t),

and - husbonok Bx 16 R4
uy(Football, sj|t,) = % -0+ (1 — %) 1l=1- ﬁ x WT‘fC %ﬁﬁ?%ﬁ .

Y
o Thus, choosi@s optimal iff ﬂ\%&ww%“ﬁlﬁﬁ :/\ﬁ‘e&f‘ﬁ .

B 1 _
1- 2> 202+ t,) &ty <ty =
x T

=3 (2) —

V9+4z—3
— 3 -

Solving (1) and (2) simultaneously, we obtain &, = &, =
o In equilibrium, the husband plays Opera with probability p* and

Football with probability 1 — p*, while the wife plays Football with

probability p* and Opera with probability 1 — p*, where

% %h _ iw _ 2
P T e T At d+s

o When z — 0, we get that p* — %
o As the incomplete information disappears, the players’ behavior in
this pure-strategy Bayesian Nash equilibrium approaches their
behavior in the mixed-strategy Nash equilibrium in the original
game of complete information.

- A dekn% Game .

N
@ Suppose a seller canprocure a product at a cost of ¢ = 1. o The extensive-form representation of the game:
@ A buyer wants to buy the good, and is willing to pay vy = 12. Nature

o The buyer can also purchase the good from other places, where
the valuation is his private information.

@ The seller knows that the distribution of the valuation for the
outside option is either v = 10 or v = 14, each with a probability of
2/3 and 1/3, respectively.

o The price of the good is p = 4, which is exogenous and
independent of where the buyer makes a purchase.

o All ¢, vp and p are common knowledge among both players.
8,3 6,0 6,-1 60 83 10,0 10,—1 10,0
@ The seller decides whether to procure the good, and the buyer

simultaneously decides whether to order the good from the seller. o Player 1 is the buyer and player 2 is the seller.
e If the seller procures the good, its payoff is p — ¢ if the buyer &Normal'form representation of the game:
makes a purchase, and —c¢ otherwise. o Action spaces: Ay = {B, N} and Ay = {P, N};

o Type spaces: Ty = {10,14} and T» = {1};

o If the seller does not procure the good, its payoff is zero regardless o @ - tho buyer’s belief on the seller’s type is 1 on {1}, and the

of the buyer’s choice. seller’s belief on the buyer’s types is 2/3 on 10 and 1/3 on 14;
@ The buyer’s payoff is yyg — p if he buys from the seller, and v— p o Payoffs are given as above.
otherwise. o Strategy spaces: S = {BB, BN, NB, NN} and S; = { P, N}
o What should the seller and the buyer do? o The meaning of BN: the buyer with outside option 10 chooses “to

buy” and with outside option 14 chooses “not to buy”.

o Alternatively, we can use the following matrix to represent the
game:
Buyer
. _ - _ % ﬂ BB BN NB NN
l/ . _
EA%&D]&@, R%AT. Seller B ROT Selley P | 388 [5/3.8.10] 1/3.6.8 1,6,10

Rt He N| 0,6,10 0,6, 10 0,6,10 0,6,10
;vﬁiil?%l%:&;::f ; L o For example, consider the outcome (P, BN):

o the buyer with type 10 receives vy — p = 8, and with type 14
receives v — p = 10;
o the seller’s expected payoff is 3 x 2/3 —1x1/3=5/3.
o In particular, we can consider two types of the buyer as two
players and we can solve the Bayesian Nash equilibria in the above
(like three-player) normal-form representation of the game.

o We first find out the best response functions for each of the “three
players” (the seller and each type of the buyer).
Buyer
BB BN NB NN
P| 3,88 |5/3,810] 1/3,6,8 | —1,6,10
N| 0,6,10 0,6,10 0,6,10 0,6,10
o Two Bayesian Nash equilibria: (P, BN) and (N, NN).

Seller




Lec Il Auctions
« Latroduchion

@ One of the most popular examples of static games of incomplete
information is an auction.

@ An auction is a mechanism of allocating goods.

o Advantages of auctions:

o a simple way of determining the market-based prices

e more flexible than setting a fixed price

o can usually achieve efficiency by allocating the resources to those
who value them most highly

: -\3 pes 0‘5' Ructins

@ Number of objects
o A single object or many?
e Open vs. sealed-bid %311&11'\
e Do you know the bids of other participants?
@ One-sided vs. two-sided
e Do buyers and sellers both submit bids, or just buyers?
o Private value vs. common value
e Do bidders have the same valuation for the object?

« U4 Classicak  Aunctions

L kR0
English: ascending, open
Dutch: @m open

o First-price, sealed-bid

e Second-price, sealed-bid (or Vickrey)

“ FHind- Hwrn
+ R Sewndh - Prce  Sealecd - Bigh RAuction.

@ Suppose there are n potential buyers (or bidders), with valuations
u1,. .., vy for an object.

@ Suppose v; belongs to the set V; for all 7.

o Bidders know their own valuation but do not know other bidders’
valuations.

o The bidders simultaneously submit bids b; € [0, 00).

@ The highest bidder wins the object and pays the second highest
bid, while the other bidders obtain nothing.

o If there are more than one winners, the object is allocated
randomly among them.

o Let r; be the highest bid of all players other than player ¢, where
T = Max;z; b.

The bidder 7’s payoff function is
v — 1 if by > 1y
wi(bi, by o) = § U if b=
0, if b7 < 13,
where £ is the number of bids that equal b;.

Counsider a strategy profile (s, ..., s%) in a static Bayesian game.
P\‘vg Suppose for any player i, any ¢; € T;, a; € A, and a_; € A_y,

ui(s:(ti),a_i; L‘i) ui(ai, a—z; 1‘4), > 55&1‘5 $,\IE (1@;\-293—)

(i.e., s§(t;) weakly dominates every a; € A;). Then (s},...,s};) is a
Bayesian Nash equilibrium.

o Proof: Because s* ,(t_;) € A_;, the weak dominance implies
wi( 7 (1), 8% 5(E-0); ts) = walas, s°5(1-0); )
for any t; € T; and a; € A;.

o Then s}(t;) solves

max wi(ag, S (20); t) pi(t_il t;),
a;€A;
teT_;

for all t; and for all .

o Therefore, (sj,..., s;) is a Bayesian Nash equilibrium.



e Each player i's strategy is a function s; from V; into [0, c0).
e For player ¢, consider the strategy of bidding his true valuation s},
where s}(v;) = v; for all v; € V.

o We can show that for any v;, s;(v;) = v; weakly dominates all

other bids.
pare s§(v5) = v; with b; > v %\\/\ﬂa‘ﬂ;{q
I T
0, & TR 0, if LT > by
(b p) =3 b b ) = 4 TFR0 = by
uz(’U;, b,“ Ul) = 0, > uz(bu b,“ Uz) = i — Tk 0If v; < 15 < bis

v — T v — 1y, i < v

o Then s}(v;) = v; weakly dominates b; > v;.

pare §5(vy) = v; with b; < vz

0, 0, if m > v
—— 0, if by < 1 < v
ui(v;, b_i v;) = > by bogyv) =< L, .
z( i % 1,) vi— i, 1,( 2] i Y U’k”7 if 7y = by
v — T v —1g,  if 7 < by

o Then s} (v;) = v; weakly dominates b; < v;.

e Since s} (v;) = v; weakly dominates all b; for any v; and any player
i, by the previous proposition} (sj,..., s;) is a Bayesian Nash
equilibrium.

. srst - Price  Seolech - Bid Aucti : i
A First - Price e ucbion %2 \REB

@ Suppose there are two bidders: ¢=1,2. Alternatively. if we can somehow guess that

o The bidders’ valuations for an object are v; and vy, which are (ST(Uu )> 85(v2)) = (v1/2, v2/2) is a Bayesian Nash equilibrium, we
independently and uniformly distributed on [0, 1]. can prove it directly.

o The valuation v; is bidder #'s private information, which is o Suppose player j has adopted the strategy Sj(ﬂj) = /2.
unknown to the other bidder. o Player 7’s best response b; solves

o Bidders submit their bids b; and by simultaneously.
max (v; — by)Pr(b; > v;/2) = max  2(v; — by) by
@ The higher bidder wins the object and pays the highest bid, while b;:€[0,1/2] b;€[0,1/2]

the other obtains nothing. - 0.1l th ) Ciger is b 5
o For any v; € [0,1], the e me s b = v;/2.
o If there is a tie, the winner is determined by a flip of a coin. rany v € [0, 1] unique maximizer is b; = vi/

. ) ) . . o Thus (sj(v1), s5(v2)) = (v1/2,v2/2) is a Bayesian Nash equilibrium.

@ The normal-form representation of this static Bayesian game is

G = {A1, Az; Ty, Ta;p1, p2; w, up}:
Ay = Ay = [0, 00), and each bid is b; € A;;
T, = To = [0,1], and each valuation is v; € Tj;
Player i believes that v; is uniformly distributed on [0, 1];
The payoff u;(b;, bj; v;) is

Vi — bi, if b; > bj;
ui(by, by v5) = § 2(v; — by),  if by = b;;
0, if b; < b]'.

o Bidder 7’s strategy is a function s;(v;) from [0, 1] into [0, 00).
o (s}, s3) is a Bayesian Nash equilibrium if and only if for ¢=1,2
and each v; € [0,1], s}(v;) solves

max Eyui(biy 85 (j); vi)

= max {(w = b)Pr{b; > s} (v)} + %(vi — by)Pr{b; = s}‘(vj)}}

o There may be many Bayesian Nash equilibria in this game.

o We focus on equilibria in the form of linear functions:
si(n) = a1 + c1v1, and s5(w2) = ag + co,

where ¢; > 0,and 0 < a; < 1 for 1= 1,2.
o To solve for the Bayesian Nash equilibria, we just need to find out
the coefficients a; and ¢; accordingly.

° ionale of th mptions on_a; an
e ¢; > 0: a bidder with higher valuation is willing to bid higher
e a; > 0: bids cannot be negative
e g; < 1: for a; > 1, bidder ¢ can never end up with a positive payoff
given v; € [0,1]

o We need to determine each player’s best response given the other’s
strategy.
@ Suppose player j adopts a linear strategy s;‘(vj) = aj+ cjuj in
equilibrium, where ¢; > 0.
o We have
Pr(b; = a;+ ¢jv;) = Pr (Uj = @) =0.
j

o For any v; € [0,1], player ©’s best response b; maximizes

b — as
(’UZ‘ — bZ)PI‘(b,L > aj + Cj'l}j) = (’Ui — bz)Pl‘ (’Uj < Zc—a]) .
7



Since s;(vj) = a; + ¢;v; € [aj, a; + ¢j], we can restrict our attention
to b; € [aj, aj+ ¢j] (ie., b; < a; is pointless, while b; > a; + ¢; is not

rational).

Under the above restriction, we know that

bi — 4

0< <L

G

Player ¢’s best response b; solves

b; — a;
max (v — bj)—.
a;<bi<ajt+cj Cj

o The best response of player 7 is
aj, if v; < ag; AR o vi ®.
si(vg) = %(vi—‘r a;), if aj < v < aj+ 2¢p;
[ + Cjs if v; > [ —+ 26]'.
o We want the equilibrium bid to be a linear function on [0, 1].

o There are three cases: y
MLy € Gy
(=00, aj] 4 \|‘ 374 {%.‘,\
[0,1] € < [a), a5+ 2¢)) 2WVit ()

[aj + 2¢j, )

Case 1 violates the assumption a; < 1.

Case 3 violates the assumptions a; > 0 and ¢; > 0, which imply

aj+2¢; > 0.

o Therefore, we have [0,1] C [aj, aj + 2¢;], and the best response is
1

si(vi) = 5(%‘ + a)).

e In a Bayesian Nash equilibrium,

1
si(vi) = ai+ civy = S (vi + @)

for all v; € [0,1].
@ Then we have 1
ai = 50, and ¢; = 3
for i,j=1,2 and i # j.

Therefore

1
ap = as =0, andq:@:i.

o The unique linear Bayesian Nash equilibrium is

1 1
si(m) = 30 and sh(wn) = S

(7%) LR Shdes)
« A Double Auction



Lec 12. Pecfeat Bayesion Equaldbrivm

“leadk n example

o Example 1:

. Reckwlremmts

\) At each information set, the player with the move must have a belief
about which node in the information set has been reached by the play
of the game. For a nonsingleton information set, a belief is a
probability distribution over the nodes in the information set; for a
singleton information set, a belief puts probability one on the single
decision node.

In Example 1, Requirement 1 implies that if player 2’s
nonsingleton information set is reached, player 2 must form a
belief on which of the decision node has been reached, i.e., player 2
believes that player 1 has chosen L with probability p, and M with
probability 1 — p, where p € [0, 1].

BRI

2) Given their beliefs, the players’ strategies must be;sequentially
Jational. That is, at each information set, the action taken by the
player with the move (and the player’s subsequent strategy) must be
optimal, given the player’s belief at that information set and the other
players’ subsequent strategies (where a “subsequent strategy” is a
complete plan of action covering every contingency that might arise
after the given information set has been reached).

o Given this belief, player 2’s expected payoffs are
o playing I': p-1+(1—p)-2=2—p
o playing R: p-0+(1—p)-1=1—p
e Since R’ is never optimal for any belief, (R, R') cannot satisfy
Requirement 2.
o Requirements 1 and 2 together can already eliminate the
equilibrium (R, R') which relies on a non-credible threat.

o Requirements 1 and 2 allow for arbitrary beliefs, including

unreasonable ones. Further requirements on players’ beliefs need

to be introduced.

For a given equilibrium in a given extensive-form game, an information

M_- set is on the equilibrium path if it will be reached with positive
probability if the game is played according to the equilibrium

strategies, and is off the equilibrium path if it is definitely not to be

reached if the game is played according to the equilibrium strategies.

o In Example 1, player 1’s singleton information set is always on the

equilibrium path.
o Consider player 2’s nonsingleton information set.

@ For the equilibrium (L, L), the nonsingleton information set is on
the equilibrium path.

e For the equilibrium (R, R'), the nonsingleton information set is off

the equilibrium path.

3) At information setgomthe equilibrium path, beliefs are determined b
Bayes’ rule and the players’ equilibrium strategies.

o In Example 1, for the equilibrium (L, L'), Requirement 3 implies
that player 2’s belief must be p = 1.

o Consider a hypothetical situation: the game has a mixed-strategy
equilibrium in which player 1 plays L with probability ¢;, M with
probability ¢z, and R with probability 1 — ¢; — ¢2. Requirement 3

-l Lanap-RakY .

would force player 2’s belief to be

q
a+q

p = Prob(L is played |L or M is played) =

W AHTRE 2 2 B nodke .

2,1 0,0 0,2 0,1
o What are the pure-strategy Nash equilibria and subgame-perfect
Nash equilibria in this game?

o The normal-form representation of the game is

Player 2

' R

L|21]0,0

Player 1 M | 0,2 ] 0,1
R|11,3]1,3

o Two pure-strategy Nash equilibria:

(L, L) and (R, R')

Since the above game has no subgames, both (L, L') and (R, R')
are subgame-perfect Nash equilibria.

However, (R, R') is based on a non-credible threat from player 2.

o On the one hand, if player 1 believes player 2’s threat of playing
R', then player 1 should choose R to end the game with payoff 1,
which is larger than 0 by choosing L or M.

On the other hand, if player 1 doesn’t believe the threat and plays
L or M, then when player 2 gets the move, he will indeed choose
I, since L is strictly better than R’ for player 2.

o Thus, the threat of playing R’ by player 2 is not credible.

o In Example 1, the equilibrium (R, R') is not reasonable as it
depends on a non-credible threat.

o We need to strengthen the equilibrium concept to rule out some
subgame-perfect Nash equilibria like (R, R).

@ A stronger equilibrium concept = perfect Bayesian
equilibrium

o Here the “equilibrium” can mean Nash equilibrium,
subgame-perfect Nash equilibrium, Bayesian Nash equilibrium or
perfect Bayesian equilibrium.

— B335 332 3BE MRvE Ve BEY
L LRRAFMERMZAE.
BR Regareest 3/4.



&) At information see equilibrium path, beliefs are determined by

Bayes’ rule and the players’ equilibrium strategies \\;\W b Mte . {%\H Z\T:l \%ﬁpﬁ\ Z@ mv'aﬁ @,‘ ,f§'| Z¢, Phy“ 2 “z%'
3-TF e player 2 T EIREZ L/R. > R) Bayes'
"t any vesictons on paver Baatt g Bl 2 T (ALY, FUTA LN
%\ %o R e esns) .

perfect esjan_equilibrium consists of strategie@eliefs _ . \ -L _o
ﬁ satisfying Requirements 1 through 4. M "’_\@ 89735' \Z WI\ . F= T =|. e P=Tm = 5.
L
| Pl p=Gr= 1.
ﬁﬁﬁ . p= (-2

e_%_ i«(\'?ﬂ)* e\il—‘

o Example 2: - P(-\ LZ—D) il .iz =0.
L P&R)

1,2,1 3,33 0,1,2 0,1,1

o What are the (pure-strategy) Nash equilibria and subgame-perfect
Nash equilibria of this game? Are they also perfect Bayesian

equilibria?
@ The normal-form representation of the game:
L R L R
A120,01200 A12,0,0]2,0,0
D[1,21]0,1,2 D[3,3,3]0,1,1
Player 3 chooses L/ Player 3 chooses R’
@ Player 1 chooses the row, player 2 chooses the column and player 3 M %\\fﬁ\_

chooses the matrix.

o Four pure-strategy Nash equilibria:

1 1
e Notr - WpE R -
(A7 L7 Ll)7(A:R7 L/)7(A7 R7 R/), and (D7 L1 R/) ﬁi‘% ?gé‘?&? *\% % N -
The game has a unique subgame (beginning at player 2’s singleton e'?' Z\Bg%%% Fé 3 '12 &ﬁh ﬂqﬂ“ Z —%'g\{ﬁ L.

information set), and the unique Nash equilibrium of this subgame
is (L, R).
Hence, the unique subgame-perfect Nash equilibrium of the game
is (D, L, R).

o The other three Nash equilibria are not subgame-perfect.

o Check whether each equilibrium is a perfect Bayesian equilibrium. =» %1}7\ %g%]: rettu}r»ne«vl' \- Lf .
Hint- B requirment 2 W/R% 4 p e R{ES

—_ /@% _
o Consider the subgame-perfect Nash equilibrium (D, L, R'). @ reqp\ 2 q' lﬁ é‘ ? =\
o These strategies and the belief p = 1 for player 3 satisfy

Requirements 1-3. é/

> (AL E (pet 4§ p=1).

o They also satisfy Requirement 4, since there is no information set
off the equilibrium path

o Then the strategies (D, L, R') and the belief p = 1 indeed
constitute a perfect Bayesian equilibrium.

The other three Nash equilibria do not satisfy all Requirements
1-4.

For example, consider the Nash equilibrium (4, L, L).

Requirement 4 implies that for player 3’s nonsingleton information
set off the equilibrium path, player 3’s belief must be p = 1.

Requirement 2 then implies that for p = 1, player 3 must choose
R’ rather than L.

Therefore, the strategies (4, L, L) and the belief p = 1 do not
satisfy Requirements 1 to 4, and they are not a perfect Bayesian 1,2,1 3,3,3 0,1,2 0,1,1
equilibrium.

Perfect Bayesian equilibrium in Example 2: ((D, L, R);p=1)



e.%.

o Example 3:

0,2,0 2,0,1 2,0,1 2,0,0

o Three pure-strategy Nash equilibria:
(A,L, 1), (AR, L), and (A, R, R')

SDConsider the strategies (A, L, L') and the belief p < 1/2, which
satisfy Requirements 1 to 3.

o Requirement 4 implies that for player 3’s information set off the
equilibrium path, the belief must be p = 1, which contradicts
p<1/2.

o Therefore, there exists no belief together with the strategies
(A, L, I') that constitutes a perfect Bayesian equilibrium.

@onsider strategies (A4, R, L') and the belief p < 1/2.

o They satisfy Requirement 4, which puts no restrictions on player
3’s belief at the information set off the equilibrium path.

o They also satisfy Requirements 1 and 3.

o However, at player 2’s singleton information set, player 2 should
choose L rather than R given player 3’s equilibrium strategy,
which implies that Requirement 2 is violated.

o Thus, strategies (A, R, L') and the belief p < 1/2 do not constitute
a perfect Bayesian equilibrium.

@Consider the strategies (A, R, R') and the belief p > 1/2. 0,2,0 2,0,1 2,0,1 2,0,0
o They satisfy all Requirements 1-4, and thus constitute a perfect
Bayesian equilibrium. Perfect Bayesian equilibrium in Example 3: ((4, R, R');p > 1/2)

(& Whether a given equilibrium is a
perfect Bayesian equilibrium:

(1) Determine a belief for each information set by Bayes’ rule;
(2) Check whether the equilibrium is optimal given each belief
determined in (1) and the subsequent strategies.

o A perfect Bayesian equilibrium consists not only strategies but
also beliefs of players, and it requires each player’s strategy to be
'iven his or he eliefs.

- Relatinsip  between Dhfferet  Equabbrium  Concepts

° Per%@C% Bayesian equilibrium is astronger equilibrium concept
that

efines different types of equilibria.

e On the one hand, it refines Bayesian Nash equilibrium (in the
same way as subgame-perfect Nash equilibrium refines Nash
equilibrium).

e On the other hand, it strengthens subgame-perfect Nash
equilibrium by explicitly analyzing beliefs.

o In addition, while a Nash equilibrium requires that no player
chooses a strictly dominated strategy, a perfect Bayesian
equilibrium requires no player’s strategy to be strictly dominated
beginning at any information set.

o Perfect Bayesian equilibrium

o Nash equilibrium (with appropriate bettefs 1W0f N
complete information;

° mmmrium in.static games of\iry_mgle}e_
information;

o subgame-perfect Nash equilibrium (with appropriate beliefs) in
dynamic games of complete and perfect information (and also many
dynamic games of complete but imperfect information).




e.g. J/

o Example 4:

2,2 0,0 0,0 1,1
@ Three perfect Bayesian equilibria:

(L, L);p=1),((R,R);p=0),
and ((;L+ ER, ‘EL/ + §R/) ip= 1/3)

3 33
o The normal-form representation of the game is
Player 2
I R

L
Player 1
yer 1

2,210,0
0,0 | 1,1

@ Three Nash equilibria:
1 2 1 2
L,I)),(R,R), and ( L+ -R,-L' +-R
( )(’)’an<3+33+3>
o Each Nash equilibrium (together with a correct belief) corresponds

to a perfect Bayesian equilibrium in this static game of complete
information.

eqg. L

e Example 5:

Nature

83 6,0 6,—-1 6,0 8,3 10,0 10,-1 10,0
e Two (pure-strategy) Bayesian Nash equilibria: (BN, P) and
(NN, N)
o Two (pure-strategy) perfect Bayesian equilibria:

((BN, P);p1 = 2/3,pa = 1/3), (NN, N); p2 = 2/3, ps = 1/3)

o Consider the first equilibrium, for example.

o For the strategy BN chosen by player 1, Requirement 3 implies
that the belief is p; = 2/3 and ps = 1/3.

o Given this belief, it is optimal for player 2 to choose P.

e Given player 2’s strategy P, it is optimal for player 1 type 1 to
choose B, and type 2 to choose N.
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Lec (2 M Games | 3y complote infomation
|
WC models where Tnformed aguits take sSme Obsevable actions before uninformeol agents make their Strategic decions

o Signaling games are a relatively simple setting in which to study
o how players update beliefs based on observed actions (signals);
o how players try to strategically reveal or conceal private
information by their choice of actions.

. giﬁnal,bn% Glames

o A simple signaling game is a dynamic game of incomplete
information involving two players: a Sender_(S) and a Receiver
(R). V&’w\fih) (&RfAt R

o The timing of the game is as follows:

1. Nature draws a type t; for the Sender from a set of feasible types
T = {t,...,t;} according to a probability distribution P(t;), where
P(t;) > 0 for every ¢and P(t) + --- + P(tr) = 1.

2. The Sender observes t; and then chooses a message m; from a set of

feasible messages M = {my,..., ms}.
3. The Receiver observes m; (but not ¢;) and then chooses an action ay,
from a set of feasible actions A = {ay,..., ax}.

4. Payoffs are given by Ug(t;, mj, a) and Ug(t;, m;, ag).

e Consider the following signaling game: a a
m 1 my
T={t,t2},A={ar, a2}, P(h) = p, and M = {m1, ma}. w , D
@ The Sender has four pure strategies: Receiver Nature Receiver
: 1, :
(m1, m1), (m1, ma), (ma, m1), and (mg, ma). a ? !
o The strategy (m/, m”) means the Sender of type #; chooses a o b oM™ P
message m’ and type to chooses a message m’.
o Similarly, the Receiver has four pure strategies: Figure 1: A signaling game

(a1, @), (a1, a2), (a2, a1), and (ag, az).

o The strategy (d’, a”) means the Receiver plays @ if the Sender
chooses my and plays a” if the Sender chooses my. Uﬁ'- @iﬁl\)

o We call Sender’s strategies (m1, m1), (ma, mz) to be poolin,
(because each type sends the same message), and (my, my),
(ma, m1) to beseparating (because each type sends a different

message). % % ﬁ%)
. Siambbng Ratu}rements

After observing any message m; from M, the Receiver must have a

1) belief about which types could have sent m;. Denote this belief by the
probability distribution p(t;m;), where pu(t;|m;) > 0 for each t; € T,
and 37, o pp(ti|my) = 1.

- Eﬁw*&.
2) Redver : |121&HR AL@ U e bebed) .

For each m; € M, the Receiver’s action a*(m;) must maximize the
Receiver’s expected utility, given the belief u(t;]m;) about which types
could have sent m;. That is, a*(m;) solves

max Z w(timy) Ur(ti, my, ar).
A e
Senoler: | (¥ Recwver W9 FA%)
For each t; € T, the Sender’s message m*(t;) must maximize the
Sender’s utility, given the Receiver’s strategy a*(mj;). That is, m*(¢;)
solves

max Us(t mj, a*(mj))-

o These two requirements imply that both the Receiver and the
Sender act in an optimal way.

o Given the Sender’s optimal strategy m*(t;), i.e., m* is a function
from Tinto M, let T; = {t; € T: m*(t;) = m;}. T} is the set of all
types sending the message m;.

@ The information set corresponding to m; is on the equilibrium
path if T; # 0, and off the equilibrium path otherwise.



For each mj; € M, if there exists t; € T such that m*(t;) = m;, ie.,
i # 0, then the Receiver’s belief at the information set correspondin
%)TJ 0, then the Receiver’s belief at the informati t ding
to m; must follow from Bayes’ rule and the Sender’s strategy:

__ P)
M(t'tlmj) - Zthi P(t) 7Vtz € Tj

. Pe,p:gc(x Baa,es\u« ETAA Werla,

A pure-strategy. perfect Bayesia
% is a pair of(gtrategles m*(t;) and a*(m;) and &

uilibrium in a signaling game
belief p(t;|m;) satisfying

Signaling Requirements (1), (2R), (2S), and (3).

o A strategy for the Sender is a function from the type space T into

the message space M; a strategy for the Receiver is a function

from the message space M into the action space A.

o For a perfect Bayesian equilibrium of a signaling game, if the
Sender’s strategy is pooling (or separating), then we call the
equilibrium pooling (or separating), respectively.

e.(ar.

#ls.

o Find all pure-strategy perfect Bayesian equilibria in the following

signaling game.
1,3 2,1

u
bl L 4 r ld

4,0 d . 0.5 Do d 0,0
Receiver Nature Receiver
2,4 - 0.5 - 1,0
[[1-7l [1—d:
L ) R
0,1 d d 1,2
o The first (the second) number is the payoff to the Sender (the
Receiver).
In this game,

®

T={t,t},P(t)) = 0.5, M= {L,R}, A = {u, d}.

The Sender’s strategies are: (L, L), (L, R), (R, L) and (R, R), where
(m/, m") means that type # chooses m and type t; chooses m”.
The Receiver’s strategies are: (u,u), (u, d), (d, v), and (d, d), where
(d, @’) means that the Receiver plays ' following L and o
following R.

We analyze the possibility of the four Sender’s strategies to
constitute perfect Bayesian equilibria.

Case 1: Pooling on L

Suppose the Sender adopts the strategy (L, L).

By Signaling Requirement 3, we have p =1 — p = 0.5. Given this
belief (or any belief) of the Receiver, the Receiver’s best response
to message L is u, i.e., a*(L) = u.

For the message R, the Receiver’s belief ¢ cannot be determined
by Sender’s strategy, and thus we can choose any belief ¢.
Furthermore, both ¢*(R) = u and a*(R) = d are possible for some
¢ Indeed a*(R) = uwiff ¢>2/3; and a*(R) = d iff ¢ < 2/3.

We only need to see if sending L is better than sending R for both

types t; and fo.

o If a*(R) = u, i.c., (u, u) is the Receiver’s strategy, then for type #,

the Sender’s payoff is 1 if L is sent and 2 if R is sent. Hence,
sending L is not optimal.

1% If a*(R) = d, i.e., (u, d) is the Receiver’s strategy, then for type t1,

Tk Sendec v Bre_
T RUBRL |

the Sender’s payoff is 1 if L is sent and 0 if R is sent, choosing L is
optimal; for type t2, choosing L is also optimal given 2 > 1.

Thus, (L, L) is the Sender’s best response to the Receiver’s
strategy (u, d).

Moreover, (u, d) is also the Receiver’s best response to the Sender’s
strategy (L, L) if ¢ < 2/3.

Therefore, [(L, L), (u, d); p= 0.5, ¢ < 2/3] is a pooling equilibrium.

1,3 2,1
u u
\ I tl R

p=05 g<2/3 \
4,0 d : 0.5 o d 0,0
Receiver Nature Receiver

2,4 " : 0.5 : " 1,0
\1—p:0.5 1—-¢>1/3:
L to R \
0,1 d d 1,2

?

Figure 2: Pooling equilibrium: [(L, L), (u,d); p = 0.5, ¢ < 2/3]



e Case 2: Pooling on R

e Suppose the Sender adopts the strategy (R, R).

o Then Signaling Requirement 3 implies that ¢=1 — ¢= 0.5. Given
this belief, the Receiver’s best response to R is d, i.e., a*(R) = d,
since 0.5 < 1.

o For the message L, we can choose any belief p. But we know for
any p, the Receiver’s best response to L is u, i.e., a*(L) = u.

o Given the Receiver’s strategy (u, d), for type #1, the Sender’s
payoff is 0 if R is sent and 1 if L is sent, and thus R is not optimal.

o Therefore, there is no equilibrium in which the Sender plays (R, R).

o Case 3: Separation with ¢ playing L

Suppose the Sender adopts the separating strategy (L, R).

o Then, Signaling Requirement 3 implies p = 1 and ¢ = 0. For these
beliefs, we must have a*(L) = u, and a*(R) = d.

Given the Receiver’s strategy (u, d), for type ts, the Sender’s
payoff is 2 if L is sent and 1 if R is sent. Hence R is not optimal.

Therefore, there is no equilibrium in which the Sender plays (L, R).
o Case 4: Separation with ¢, playing R

1,3 2,1
e Suppose the Sender adopts the separating strategy (R, L). ’ X I ¢ R / ’
1

o Then, Signaling Requirement 3 implies p = 0 and ¢ = 1. For these
beliefs, we have a*(L) = u and a*(R) = . p=0 g=1:

o Given the Receiver’s strategy (u,u), for type t1, the Sender’s 4,0 d 0.5 d 0,0
payoff is 1 if L is sent and 2 if R is sent. Hence R is optimal. :

e For the Sender type ta, the payoff is 2 if L is sent and 1 if R is Rec?iver Nature Rec?iver

sent. Hence L is also optimal.

2,4 : 0.5 : 1,0
o Therefore, [(R, L), (u, u); p = 0, ¢ = 1] is a separating perfect u _ _n. U
. e 1l-p=1 1-¢=0:
Bayesian equilibrium.
L to R
0,1 d d 1,2

How to find (pure-strategy) perfect Bayesian equilibria in signaling Figure 3: Separating equilibrium: [(R, L), (u, w);p =0, ¢= 1]
games:

(1) Start with a strategy of the Sender (pooling or separating);
) If possible, calculate the beliefs of the Receiver using Bayes’ rules.
Otherwise, choose arbitrary beliefs; (Requirement 3)
) Given the beliefs, find out the best response of the Receiver; (Rettwremmt 2)
(4) Check whether the Sender’s strategy is a best response to the
Receiver’s strategy.

Y

o Consider an alternative way to find perfect Bayesian equilibria.

o We first find Bayeisan Nash equilibria, and then check which
equilibria are perfect Bayesian equilibria.

o Consider the following matrix to represent the game:

Receiver
(wuw (wd) (dw) (dd
(L,L) | 1,2,3.5 | 1,2,3.5 4,0,0.5 | 4.0,0.5
Sender (L,R) [ 1,1,1.5 | 1,1,2.5 | 4,1.0 4,1,1
(R, L) [2,2,25 | 0,2,2 | 2,0,1 [0,0,0.5
(R,R) [2,1,05] 0,1,1 |2,1,05] 0,1,1

o Two (pure-strategy) Bayesian Nash equilibria: ((L, L), (u, d)) and

((R, L), (u, u))
o To check whether they are perfect Bayesian equilibria, we only
need to find beliefs, satisfying all four Signaling Requirements.

—

o For (L, L), Bayes’ rule requires p = 0.5 and there is no requirement
for g. Given the belief, a*(L) = u, and a*(R) = d iff ¢ < 2/3. Thus
(u, d) is a best response to (L, L) iff p=0.5 and ¢ < 2/3.

e For (R, L), Bayes’ rule requires p = 0 and ¢ = 1. Given this belief,
a*(L) = wand a*(R) = u. Thus (u, u) is a best response to (R, L).

o Therefore, [(L, L), (u, d); p = 0.5, ¢ < 2/3] and
[(R,L),(u,u); p=0, ¢ = 1] are two perfect Bayesian equilibria.
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o Consider the following signaling game.

LlX[p] . 4 R @/

2,2 d . 0.5 . d 1,0
Receiver Nature Receiver
3,2 : : 4,0
5 u 0.5 u )

1 —p] Ik

to
2,1

o Besides pure-strategy perfect Bayesian equilibria (either
separating or pooling), there may exist hybrid equilibria in which
some type of the Sender randomizes.

1,1

€~%' o Consider a hybrid equilibrium in which type # Sender randomizes
between L and R, while type #5 Sender chooses R.
o Let the hybrid strategy of the Sender being (1 — )L + m R for
type t1, where 0 < 11 < 1, and R for type ta.

A~ U2%4L Ry - 1% B
BhtllRL.

o_Given the Sender’s strategy, the Receiver’s beliefs are p = 1 and
¢ = - by Bayes’ rules.
@o Then the Receiver’s best response to message L is d.
Cz) For message R, given the belief ¢, the Receiver’s best response is

u, if ¢ > %;

k. ] H .
Br(q) = { nu+ (1 —mr)d, if g=35;->uSd FEE

d, if < %

o If the Receiver chooses u, then type ¢; Sender would choose R
rather than (1 — )L+ rR.

o If the Receiver chooses d, then type #; Sender would choose L
rather than (1 — )L+ riR.

o The remaining possibility is for the Receiver to choose
rou+ (1 — rp)d for 0 < r» < 1, which requires that ¢ = };

o This further implies that r = %

o Given that the Receiver chooses mpu+ (I — r2)d when R is sent,
where 0 < 1y < 1, type t; Sender will choose %L + %R if

2=3n+(1-n). = LKEFE=% (ﬂﬁ@)

Hence, we get r = %
o Given the Receiver’s choice, type # Sender gets an expected payoff
of % when choosing R, which is strictly higher than 2.

Therefore, it is indeed optimal for type t2 Sender to choose R.

o In sum, the following is a hybrid equilibrium:
[(GL+ 3R, R),(d 5u+ 3d);(p=1,¢= 3)].

(3RE®R%)
: Ckeo«\; = T(ZM& Games

o Cheap-talk games are analogous to signaling games, but the
Sender’s messages are just talk, i.e., costless, non-binding,
nonverifiable claims.

Cheap talk cannot be informative in some cases (for example,
Spence’s job-market signaling model).

o There are situations where cheap talk can convey some
information (although may not be fully precise), for example,
Stein (1989), Matthews (1989), Austen-Smith (1990).

o In general, cheap talk can be informative under certain conditions.

The timing of the simplest cheap-talk game is identical to the
timing of the simplest signaling game (only payoff functions
differ):
1. Nature draws a type t; for the Sender from a set of feasible types
T={t,...,t} according to a probability distribution P(¢;), where
P(t;) > 0 for every iand P(t) +---+ P(¢1) = 1.
2. The Sender observes #; and then chooses a message m; from a set of

feasible messages M = {my,..., my}.
3. The Receiver observes m; (but not #;) and then chooses an action ay,
from a set of feasible actions A = {a,..., ax}.

4. Payoffs are given by Ug(t;, a) and Ugr(t;, ax).
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The key feature of the cheap-talk game is that the message has no
direct effect on the payoffs of the Sender and the Receiver.

The message can only be informative by changing the Receiver’s
belief about the Sender’s type.

Since anything can be said (i.e., M can be a very large set), it is
typically assumed that M = T.

The definition of perfect Bayesian equilibrium in a cheap-talk
game is identical to that in a signaling game.

One key difference between these two games is that there always
exists a pooling equilibrium in a cheap-talk game.

The following is a pooling equilibrium:
m () =17, a"(my) = a*, p(ti|lmy) = P(t:)
for all ¢; € T'and m; € M, where t* is any message, and a* solves
max Y P(t;) Ur(t;, ag).

In this pooling equilibrium, the Sender of all tvpes sends the same
message t*. while the Receiver keeps the prior belief of all

messages and takes an action optimally according to the belief.

An interesting question isswhether there exists any non-pooling

equilibrium in which ¢ nig; can_be effective:

Find all pure-strategy perfect Bayesian equilibria of the following
signaling game.

1,3 ag al 1,3
[p] tr, tr, ty [q}

0,1 O ; 0.5 .o 0,1

Receiver Nature Receiver

0,1 : 0.5 : 0,1

i ay, - - ag )
(1 -] [1—q:

L ty ty
1,2 aH oH 1,2

Note that the above signaling game is indeed a cheap-talk game,
since neither the Sender’s payoff nor the Receiver’s payoff depends
on the messages.

Clearly, there are two pooling equilibria:

(e, 1), (ar, ar); p=0.5,9 > 1/3],
and

((tm tu), (az, ar);p > 1/3, ¢ = 0.5].

There also exist two separating equilibria:
(e, tn), (aL, am)ip=1,¢=0],

and
[(tm, tr), (am, ar);p = 0,¢ = 1].

Consider a two-type, two-action example:
T= {tL, tH}~, P(tL) =D, A= {(IL, aH}, M=T.

We use the following matrix to represent the payoffs: the first
(second) number is the payoff to the Sender (Receiver).
tr, ty
ar, | z,1 | 4,0
ag | 2,0 | w1
Note that the above matrix differs from the normal-form
representation of the game.

Consider the following separating equilibrium:

o the Sender’s strategy: [m*(¢) = ¢, m*(ty) = tul;

o the Receiver’s beliefs: pu(tr|tr) =1 and p(tn|ty) = 0;

o the Receiver’s strategy: [a*(t1) = ar, a*(ty) = apn].
In the above equilibrium, each type of the Sender tells the truth.
It can be shown that the separating equilibrium exists iff > z and
y < w.
In other words, the Sender’s and the Receiver’s interests perfectly
align.
In general, Crawford and Sobel (1982) have shown that more
communication can occur through cheap talk when players’
preferences are more closely aligned.



